

Who works in agriculture?

Exploring the dynamics of youth involvement in the agri-food systems of Tanzania and Malawi

36 IFAD

RESEARCH

SERIES

by Kashi Kafle Neha Paliwal Rui Benfica The IFAD Research Series has been initiated by the Strategy and Knowledge Department in order to bring together cutting-edge thinking and research on smallholder agriculture, rural development and related themes. As a global organization with an exclusive mandate to promote rural smallholder development, IFAD seeks to present diverse viewpoints from across the development arena in order to stimulate knowledge exchange, innovation, and commitment to investing in rural people.

The opinions expressed in this publication are those of the authors and do not necessarily represent those of the International Fund for Agricultural Development (IFAD). The designations employed and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of IFAD concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The designations "developed" and "developing" countries are intended for statistical convenience and do not necessarily express a judgement about the stage reached in the development process by a particular country or area.

This publication or any part thereof may be reproduced for non-commercial purposes without prior permission from IFAD, provided that the publication or extract therefrom reproduced is attributed to IFAD and the title of this publication is stated in any publication and that a copy thereof is sent to IFAD.

Authors:

Kashi Kafle, Neha Paliwal, Rui Benfica,

© IFAD 2019 All rights reserved

ISBN 978-92-9072-881-8 Printed March 2019

Who works in agriculture?

Exploring the dynamics of youth involvement in the agri-food systems of Tanzania and Malawi

by Kashi Kafle Neha Paliwal Rui Benfica

Acknowledgements

The authors are grateful to Aslihan Arslan, Eva-Maria Egger, David Tschirley, Boris Bravo-Ureta, and Paul Winters for their comments in earlier versions, as well as participants at the 2018 annual meetings of the Agricultural and Applied Economics Association (AAEA) and a seminar at the Research and Impact Assessment division of IFAD. This paper greatly benefited from the detailed comments provided by Ganesh Thapa from the World Bank. Special thanks to the Research Series team for their support on this work.

About the authors

Kashi Kafle is an Economist at International Water Management Institute (IWMI). Kashi has multiple years of experience as an applied development economist. Prior to IWMI, Kashi worked at IFAD and World Bank. This paper was prepared during Kashi's assignment in the Research and Impact Assessment division of IFAD. Kashi has several years of experience in designing and implementing complex multi-topic household and agricultural surveys in developing countries. His research has been published in highly regarded international journals, including *World Development* and *Food Policy*. Kashi holds a PhD in applied economics from the University of Illinois at Urbana-Champaign.

Neha Paliwal is a Research Analyst in the Research and Impact Assessment Division of IFAD. Her work focuses on impact assessment, with additional research undertaken in areas related to rural development and agricultural productivity. Prior to joining IFAD, Neha's research activities included the study of seed systems as well as managing the implementation of randomized control trials. She holds an MSc in agricultural economics from the University of Connecticut and a BA in economics and international development from McGill University.

Rui Benfica is Lead Economist in the Research and Impact Assessment Division of IFAD. He undertakes research in areas relevant to IFAD's overarching goal of overcoming poverty and achieving food security. This includes development research outputs, the design and implementation of impact assessments in client countries, and economy-wide modelling analysis to inform IFAD's country strategies. Rui has extensive policy research and outreach experience in developing regions. Before joining IFAD in 2015, he was Associate Professor at Michigan State University. Prior to that, he worked at the World Bank as an economist with the Gender and Development Group, and as a poverty economist with the Africa region, Mozambique Country Office, where he worked closely with the Ministries of Planning and Development, and Agriculture and Rural Development. He holds a PhD in agricultural economics from Michigan State University with a focus on international development, commodity market analysis, and quantitative development policy research. He is a member of several professional organizations. Rui has published extensively in peer-reviewed journals.

Oversight: Paul Winters, Associate Vice-President, Strategy and Knowledge Department.

Advisory Board: Fabrizio Bresciani, Shirley Chinien, Edward Heinemann, John Hurley, Bruce Murphy, Lauren Phillips, Paolo Silveri and Abdelkarim Sma.

Editorial Management Team: Rui Benfica, Helen Gillman, Anja Lesa and Sundeep Vaid.

Table of contents

Acknowledgements
Abstract
1 Introduction
2 Data
2.1 Population age structure
3 Methodology
3.1 Conceptual definitions
3.2 Analytical Methods
4 Results
4.1 Descriptive statistics
4.2 Empirical results
5 Conclusion
References
Appendix

Abstract

This analysis examines the dynamics of employment in agriculture and the agri-food system in Tanzania and Malawi by assessing the population age structure and movements of youth (aged 15-24) and young adults (aged 25-34) in and out of agriculture and the agri-food system. Using internationally comparable integrated household and agriculture surveys, we discover that the average age of a person who works in farming as own-farm labour is 34 years in Tanzania and 31 years in Malawi. Examination of the movements into and out of the agri-food system demonstrates a high degree of short-term stability of youth and young adult participation in farming in both countries. Specifically, 59 per cent of rural Tanzanian youth and 56 per cent of rural Malawian youth are consistently engaged in farming. Yet there is considerable mobility between different sectors of employment. More than 57 per cent of the youth cohort that was not involved in the agri-food system during the baseline entered the sector in the subsequent wave, and 12 per cent of those involved in the agri-food system during the baseline moved out of the sector in the subsequent wave. Even though the high degree of stability in farming participation is encouraging, it is likely that the poor economic prospects outside farming are what is driving strong participation in single-occupation farming. Given that increasing youth employment is a priority public policy for the Governments of Tanzania and Malawi, it is recommended that the countries attempt to diversify the rural economy by developing the many economic opportunities within the agri-food system.

1 Introduction

Are youth abandoning agriculture or will they be the modern farmers of tomorrow? This is a critical question for African governments to address as they aim to develop policies that promote youth employment in the agricultural sector. Many countries in sub-Saharan Africa have experienced profound economic transformation over the past 20 years. However, continuing lags in smallholder agricultural productivity and unprecedented population growth have intensified concerns on whether the current youth generation will increasingly seek employment opportunities outside the agricultural sector.

In response to the challenges of rising youth unemployment (ILO 2017) and the need to strengthen the agricultural sector, policymakers are promoting the participation of youth in commercialized agriculture and associated sectors (Filmer and Fox 2014; World Bank 2013). Proposals to bolster participation in the agri-food system are motivated by domestic demand for food – a clear opportunity given increasing imports due to the absence of a domestic supply response. Domestic supply in sub-Saharan African countries is unable to meet rapidly growing domestic food demand as a result of the predominant use of traditional inputs, low yields and declining productivity (Jayne, Mather and Mghenyi 2010). Considering the increasing domestic demand, there is a huge potential for African youth to modernize the agricultural sector and capture returns that are currently gained by importers and international commodity markets. In current policy arenas, it is anticipated that if the engagement of youth in market-oriented agricultural activities is facilitated by access to information, communication technology and other productivity-enhancing technologies, then they will be capacitated to tap into the market potential of domestic agri-food systems. This would simultaneously address unemployment, increasing agricultural productivity and bolstering rural transformation.

It is widely acknowledged that enhancing meaningful participation requires policies to address access to land, capital and relevant skills (Brooks, Zorya and Gautam 2013). How to sustain interest in a low-return, high-risk sector, however, is where policymakers anticipate a challenge. Increasing rates of rural-to-urban migration are creating a rhetoric of concern that by moving to urban environments, youth are abandoning the agricultural sector (IFAD 2018). Expressions of lack of interest include citing the "dirty" or laborious nature of farming, coupled with concerns over opportunities for income generation and aspirations for professional, white-collar occupations, particularly among individuals with higher levels of educational attainment. There is, additionally, the impact of hierarchical societies, which entails an extended waiting period before youth can take on the role of autonomous farmer (White 2012). As the lack of love for agriculture among the 15-24 cohort has evolved into a stylized fact among development practitioners, room has grown for rhetoric regarding the ageing agricultural workforce. At their most extreme, projections have claimed that the average age of the African farmer is approximately 65 years (FAO 2014).¹

^{1.} In its original context, this statistic probably referred to the head of farming household but has been interpreted by various platforms in a broader sense here.

If governments and policymakers are to develop effective economic policies to strengthen the productive participation of youth in agriculture, then it will be essential to systematize the empirical evidence. A critical starting point is the acknowledgement that although youth outmigration and large urban youth populations are an established phenomenon, this does not necessarily imply that the rural sector is being depleted of youth labour.² A study of migration in 45 African countries spanning 1980 to 2015 (Menashe-Oren and Stecklov 2018) finds that across age cohorts, rural outmigration peaked at just 3.3 per cent for males (aged 15-19) and at 3 per cent for females (aged 10-14).

Other assumptions differentiating youth proclivity to participate in agriculture and their actual participation rates warrants further scrutiny. A recent study in Malawi, Ethiopia and Kenya (Asciutti, Pont and Sumberg 2016) finds no definitive evidence that African youth are moving away from agriculture. Even though the proportion of youth engaged in agriculture might have decreased over time, the absolute number of youth in agriculture has been increasing because populations are increasing. In an analysis of nine sub-Saharan African countries, Yeboah and Jayne (2018) find that the mean age of farmers is not rising, and is either remaining stable or falling, depending on the country. Using a full-time labour equivalent approach, they find that on-farm participation ranges from 35 to 54 per cent across the total population, while it ranges from 40 to 76 per cent among youth and from 20 to 60 per cent among young adults (aged 25-34 years). Since youth make up a significant proportion of the population, the lower rates of on-farm participation reported in these studies still translate into large agricultural labour forces in absolute terms.

Building on the existing evidence that there is a significant youth agricultural labour force, this paper studies the dynamics of youth participation in both on-farm agriculture and the broader agri-food system. As part of the transition from financial dependence to independence, youth are understood to be an economically mobile age cohort.³ Understanding the stability of their participation in both spheres of agriculture is critical in order to establish policies and targeting mechanisms, and inferences regarding the strength of connections to the sector. By quantifying movements in and out of the agricultural sector, we shed light on the extent of sustained individual-level interest, which is not apparent when assessing cross-sectional averages.

Efforts to either encourage young people into farming or kick-start agricultural modernization have only recently become part of policy discussions in several African countries, including Tanzania and Malawi (Ministry of Agriculture, Tanzania 2016; National Youth Council, Malawi 2013). With extensive support from the Food and Agriculture Organization of the United Nations (FAO), Tanzania has revised its national agricultural policy to include provisions for youth engagement in agriculture (FAO 2017). As the first step towards implementation of the revised policy, the Tanzanian government has recently launched a five-year programme, the National Strategy for Involvement of Youth in Agriculture 2016-2021. Similar efforts were made by Malawi as it launched the National Youth Policy in 2013 (National Youth Council, Malawi 2013). Both national programmes identify agriculture as a major pillar of youth employment.

Another essential consideration is how reclassification of a rural space as a peri-urban or urban space affects statistics on the growth of urbanization (Beauchemin and Bocquier 2004; Menashe-Oren and Stecklov 2018).

^{3.} The definition of youth can vary by country or context but our definition is consistent with the international definition: individuals aged 15-24 are referred to as youth and individuals aged 25-34 are referred to as young adults.

Based on our findings, over 50 per cent of rural youth are engaged in the agricultural labour force and could be targeted for market-oriented interventions. A sizeable proportion of the youth agricultural labour force does exit each year in pursuit of off-farm activities, but this is not tantamount to a reduction in the labour force, given that many simultaneously re-enter, therefore stabilizing participation numbers. The persistence of youth engagement in agriculture probably represents a safety net in the face of weak off-farm enterprises. Of those who do work outside farming, many are engaged in the agri-food system. A clear opportunity, therefore, exists to bolster youth employment in the agri-food system by addressing the weaknesses of off-farm enterprises. The significant share of youth aged 14-24 engaged in agriculture, however unwillingly, also represents an opportunity to change the nature of agriculture as young people develop sector-specific skills.

This analysis uses Living Standard Measurement Study – Integrated Survey in Agriculture (LSMS-ISA) data from Tanzania and Malawi to explore the dynamics of youth involvement in agriculture and the agri-food system in sub-Saharan Africa. The first half of our analysis uses unbalanced panels to explore the patterns of the demographic structure, employment and involvement in the agri-food system over time. In the second half, we analyse the movements of individuals in and out of the agri-food system and therefore the analysis is restricted to balanced panels.

The rest of the analysis proceeds as follows. In section 2, we describe the data used in the analysis and population age structure in Tanzania and Malawi. Section 3 presents the definition of key variables and the methodology employed in the analysis. In section 4, we discuss results by first presenting descriptive statistics from dynamics analysis based on transition matrices, and then those from the regression analysis. Section 5 concludes with a summary and the implications of the findings.

2 Data

The data for this analysis come from two LSMS-ISA countries,⁴ Tanzania and Malawi. Both datasets are nationally representative surveys implemented by the respective National Bureau of Statistics with technical support from the World Bank.⁵ Multiple rounds of data are available, but only the data from the first two waves in each country are used to construct a "baseline" and study short-term movements. The sample size and period of coverage varies by country, but the survey design and instruments are similar. This allows for cross-country comparisons, especially for survey year 2010/2011, which is included for both countries.

The datasets include integrated household, agriculture and community components, and are standardized in their general format and methodology. They are, therefore, suitable for the study of labour and agriculture, given that each dataset contains a similar labour module and separate agriculture module with information on own-farm agricultural labour and hired labour. Table 1 presents the details of cross-sectional and panel sample sizes for Tanzania and Malawi. Both datasets maintain a fairly low attrition rate of less than 4 per cent at the household level and about 7 per cent at the individual level.

	Wave 1		Wav	Wave 2		Panel
	Year	Sample size	Year	Sample size	(%)	Sample size
Tanzania						
Household	2008/2009	3 265	2010/2011	3 924	2.9	3 168
Individual		16 709		20 559	6.6	15 597
Malawi						
Household	2010/2011	3 246	2013	4 000	3.8	3 104
Individual		15 597		20 220	7.4	14 165

Table 1 Sample size and attrition

Notes: Both Tanzania and Malawi samples are nationally representative. In both countries, the sample size in the second wave includes split-off households. All second-wave households can be tracked back to baseline households.

^{4.} LSMS-ISA panel data are also available for Ethiopia, Niger, Nigeria and Uganda. Country inclusion was decided on the basis of data comparability for key indicators.

^{5.} For more information on the LSMS-ISA initiative, see www.worldbank.org/lsms-isa

2.1 Population age structure

Interest in youth agricultural participation is premised on the trend of exponential demographic growth within youth cohorts perceived as well beyond "rate of replacement" or sustainable population growth. Table 2 presents population age structure in the selected countries during the first two waves of the LSMS-ISA survey. Following convention, age structure is divided into five groups: children (aged 6-14), youth (15-24), young adults (25-34), adults (35-64) and elderly (65 and over).

Malawi Age groups Tanzania Wave 1 Wave 2 Wave 1 Wave 2 National Child (6-14) 33.9 33.3 33.9 35.9 Youth (15-24) 23.0 26.3 23.6 24.3 15.0 14.8 Young adult (25-34) 17.2 179 Adult (35-64) 22.6 21.0 20.6 17.9 Elderly (65 and over) 5.5 4.6 4.7 4.0 Observations 14 163 17 200 12 428 16 588

Table 2 Population age structure in Tanzania and Malawi

Note: Point estimates are population-weighted proportions.

Young children below the age of 6 are not included given the focus on distribution of labour activities. From the ages of 6 to 64, a skewed U-shaped pattern of population distribution is observed in both Tanzania and Malawi before tailing off for the population above age 65. The population age structure disaggregated by gender is presented as an age pyramid in the appendix. Instead of the number of people for each age category, we present the percentage of male or female population for each age category across both baseline and follow-up waves. The statistics in table 2 and the population pyramid in the appendix show that children make up the largest proportion of the population, followed by youth and young adults, but the proportion rises again for adults before tailing off for elderly people.

When considering the relevance of these patterns for today's age structure, it is useful to bear in mind that the largest proportion of population in both countries (age cohort 6-14) would constitute the youth (15-24) sample today. As a result, the number of individuals currently entering the labour market or looking for employment is higher than ever. Given current estimates of age demographics and high birth rates in the last decade, it is expected that the general U-shaped age pattern will hold, leading to a rapid increase in labour supply in both Tanzania and Malawi. The proportion of individuals entering the labour market in the coming years is therefore expected to rise rapidly.

Beyond the relevance of the growing youth cohort is the trend of youth migration from rural to urban areas in search of enhanced economic prospects. The prospect of rural youth outmigration is of concern to policymakers because an increasing rate of rural outmigration is often associated with declining youth engagement in agriculture. There is evidence indicating a surge in economic migration of rural youth in African countries (Todaro 2000), but our results add some nuance to this story; rural areas in Tanzania and Malawi still have a significant

number of youth, and it is increasing over time. Table 3 presents the population age structure in Tanzania and Malawi disaggregated by rural and urban areas. Results show that by far the largest proportion of the rural population is comprised of individuals between the ages of 6 and 34 years. As expected, urban areas in both countries are also young, with the majority of the population below 35 years of age. Existing evidence also points that, despite potential economic benefits associated with rural-to-urban migration, the rate of rural outmigration in sub-Saharan Africa is still low (de Brauw, Mueller and Lee, 2014; Kafle, Benfica and Winters, 2018).

Even though population age structure looks more or less the same in rural and urban areas, employment and engagement in agriculture may look very different. Since the rural economy is more dependent on agriculture and the urban economy more on industrial and service sectors, the rest of our analysis focuses on rural areas as a means of understanding the relationship between population age structure and engagement in the agri-food system.⁶

Age groups	Tanzania		Ma	alawi
	Wave 1	Wave 2	Wave 1	Wave 2
Rural				
Child (6-14)	36.0	35.4	34.6	36.7
Youth (15-24)	21.7	24.9	23.4	24.0
Young adult (25-34)	13.5	13.4	16.0	17.1
Adult (35-64)	22.8	21.3	20.8	17.8
Elderly (65 and over)	5.9	5.1	5.2	4.4
Observations	9 183	12 086	9 151	12 105
Urban				
Child (6-14)	27.0	27.8	30.3	31.7
Youth (15-24)	27.3	30.0	25.1	25.7
Young adult (25-34)	19.7	18.6	23.9	22.3
Adult (35-64)	22.1	20.3	19.1	18.6
Elderly (65 and over)	4.0	3.3	1.7	1.7
Observations	4 980	5 114	3 271	4 369

Table 3 Rural-Urban age structure in sub-Saharan Africa

Note: Point estimates are population-weighted proportions.

 Results from descriptive and dynamics analysis are presented for the rural sample only but regression results are presented for the national sample. Descriptive and dynamics results for both national and urban samples are presented in the appendix.

3 Methodology

3.1 Conceptual definitions

Depending on the context, agriculture or farming can have both objective and subjective meanings. For example, land or agribusiness ownership, agricultural wage labour on someone else's farm and engagement in own-farm labour to varying extents (commercial, subsistence and hobbyist) can all be considered farming. Complications arise particularly when classifying the intensity of farming and frequency of farm labour. Is it truly considered engagement in "farming" if a household casually grows vegetables in its backyard with no other cultivation? What if an individual has an off-farm primary occupation but occasionally provides labour during peak farming periods such as planting and harvesting? How many hours in a day need to be devoted to farming activities in order to qualify as a meaningful contribution? How many days in a year?

Making such determinations is especially complicated given the realities of growing seasons whereby the maximum number of full-time agricultural labour days may constitute only a third or half of the year. In this analysis, the definition of farming defers to a binary indicator for **agricultural participation**, which suffers from less ambiguity or contextual variation than using intensity of agricultural engagement. Here, agricultural participation is a binary indicator defined as engagement in own-farm agriculture during at least one agricultural season in the last 12 months.

For the purpose of this analysis, we consider everyone with at least one day of agricultural labour to be engaged in own-farm labour. Considering agricultural participation is useful in understanding whether there has been any engagement in the agricultural sector, but it will be further refined when assessing the dynamics of primary occupation. Table 4 summarizes the conceptual definitions of the key variables used in the analysis. The first two employment panels in table 4 refer to the recall structure of the LSMS datasets "Employment in the last 12 months" and "Employment in the last 7 days". Employment in the last 12 months is further categorized into **wage employment** and **self-employment**. Individuals who have had regular employment in the last 12 months are considered wage employed. Wage employment refers to anyone who earns income at an enterprise that they do not own or manage. This ranges from professionals with fixed contracts to piece workers.

Similarly, individuals who worked as an owner or manager of a business or enterprise in the last 12 months are considered self-employed.⁷ Given that respondents self-identify whether they have a household enterprise, this checks for the most informal of income-generating schemes and can range from a grocery-store owner to a street vendor. Analysis takes place

^{7.} It is important to note that between recall periods, the data on the frequency of certain labour or employment are not always comparable with other types of employment. For example, agricultural labour data are available as the number of days worked in the last two agricultural seasons, but employment in the last 12 months is available as the number of months worked.

at the individual level, and owners and managers are therefore identified separately from their household. If an individual works in a household enterprise but is not acknowledged as the owner or manager, then their livelihood status is counted as wage labour. If an individual makes no contribution to a household enterprise through ownership, management or labour, then they are not counted in either category.

Apart from farming (own-farm labour), wage employment and self-employment, all remaining individuals are referred to as "unemployed". The unemployed category should be understood as a residual category, indicating that an individual does not have a known source of income generation and additionally does not participate in agriculture. An **unemployed** person here may be a student, an unpaid apprentice or someone helping in daily household activities. The subsequent analysis does not focus on the unemployed individuals, given that we are interested in the dynamics of employment in agriculture compared with other income-generating sectors.

In the second panel in table 4, "Employment in the last 7 days" is presented. This category is further divided in to wage labour, self-employment and casual labour. The wage labour subcategory is differentiated from casual labour, given that the former captures formal short-term labour, largely in the non-agricultural sector, but the latter captures seasonal wage work, mostly in the agricultural sector, such as *ganyu* labour in the case of Malawi. Agricultural labourers (individuals who work on someone else's farm as a labourer) are categorized as casual labour and do not fall under our measures of agricultural participation. However, they are included in the "Employed in the agri-food enterprise" category and are, therefore, involved in the agri-food system.

Variables	Definition
Employment in the last 12	months
Wage employment	Individual had regular employment in a governmental or non-governmental organization in the last 12 months
Self-employment	Individual worked as an owner or manager of a business or enterprise in the last 12 months
Employment in the last 7 d	ays
Wage labour	Individual worked as a wage worker in the last 7 days
Self-employment	Individual worked as an owner or manager of a business or enterprise in the last 7 days
Casual labour	Individual worked as a casual or part-time wage worker (such as <i>ganyu</i> labour) in the last 7 days
Agri-food system involvem	ent
Single-occupation farming	Individual worked positive hours in own-farm activities in the last two seasons with no involvement in any self-enterprise or wage labour
Employed in an agri-food enterprise	Individual worked as a wage employee or self-employed in an agri-food enterprise in the last 7 days or last 12 months, or as casual labour in the last 7 days

Table 4 Variable definitions

Source: Authors' illustrations.

The third panel in table 4 presents involvement in the agri-food system, which is further categorized into single-occupation farming and employment in an agri-food enterprise. The critical difference between the agri-food system and an agrifood enterprise is that an agri-food enterprise refers to any link in the agricultural value chain or agricultural subsidiaries related to both production and processing, while the agri-food system is an umbrella term including both the agri-food enterprise and single-occupation farming (own-farm labour). Identification of businesses and schemes that count as agri-food enterprises is based on the International Standard Industrial Classification (ISIC), which acknowledges any activity from inputs to outputs as part of the agri-food system value chain. An individual who was wage-employed or self-employed in the agri-food enterprises (as identified in the ISIC) in the last 12 months or worked as a casual labour in the last seven days is considered to be employed in the agri-food enterprise.

When assessing entry into and exit from various sectors, there is a strong assumption built into the transition matrix method that individuals only participate in one sector at a time. For this portion of the analysis, we classify individuals as belonging to mutually exclusive categories following a hierarchical method. All individuals who engage in any form of wage employment, self-employment or agricultural participation are classified as wage employed. Individuals who engage in self-employment or agricultural participation (but are not wage employed) are classified as self-employed. Individuals who participate in agriculture but are neither wage employed nor self-employed are classified as agricultural participants.

By using this hierarchical method, we allow agricultural participation to represent single-occupation farming. By this we mean that those classified as agricultural participants have no other form of income generation. Specifying those who work only in agriculture allows us to cleanly identify the proportion of the youth population who are most vested in the sector. This categorization also serves as a proxy for intensity and allows us to overcome any weaknesses in using a one-day threshold.

3.2 Analytical methods

This analysis takes advantage of longitudinal data and uses transition matrices to study the dynamics of youth involvement in the agri-food system. Data are used in two different capacities – transition matrix and panel data estimator – to understand the dynamics of youth involvement in the agri-food system.

Transition matrices

The first part of the analysis uses mean estimates and transition matrices to examine patterns of employment and involvement in the agri-food system by age group over time. Transition matrices allow for the simple visual representation of movement across sectors, which provides deeper insight beyond sample averages across different points in time. Through the use of a transition matrix, we can identify sector-specific choices such as whether person *i* stayed in a particular sector or shifted to another one. In addition to the knowledge of whether person *i* shifted sectors, the use of a transition matrix will enable us to understand which sector they shifted to. Figure 1 provides a schematic representation of a transition matrix.

Figure 1 Simplified transition matrix

Time 1	Tin	ne 2	
	X2	Y2	_
<i>X</i> 1	X1 _{x2}	X1 ₁₂	$\sum x_1$
Y1	Y1 _{x2}	Y1 _{Y2}	<u>Σ</u> Y1
	$\sum x^2$	$\sum Y2$	100

The matrix comprises two time periods, Time 1 and Time 2, with mutually exclusive categories X and Y. Person i can be in either category X or Y in Time 1, and similarly can be in either category in Time 2. Original categorization in Time 1 is denoted in rows with the script 1, while categorization in Time 2 is denoted in columns and the subscript ending in 2. In this two-category transition matrix, person i has two options in Time 2: either to stay in their original category or to move to the other category. If person i started in category X and stayed in category X, then they are in cell $X1_{X2}$. Correspondingly, if person i started in category X and shifted to category Y, then they are in cell $X1_{Y2}$.

The proportion of individuals who are in any particular category during Time 1 is denoted by the aggregation term ($\sum x_1$ or $\sum y_1$) in the final column. The proportion of individuals who are in any particular category during Time 2 is denoted by the aggregation term ($\sum x_2$ or $\sum y_2$) in the final row. All terms in the inner quadrant represent the totality of choices person *i* could make. Therefore, $X_{1_{X_2}}$ will provide the proportion of the sample that was originally in *X* and also stayed in *X*. Just as the summation of $\sum x_1$ and $\sum y_1$ will add up to 100 (the same for $\sum x_2$ and $\sum y_2$), so will the inner quadrant.

Panel data estimators

In the second half of the analysis, we use panel data estimators to explore the relationship between the age group of individuals and their involvement in the agri-food system. First, we use a conditional lagged model to estimate the relationship between baseline age structure on second-wave employment outcomes. Second, we use panel data estimators to estimate the relationship between population age structure and employment outcomes over time.

$$Y_{it2} = \alpha_0 + \alpha_1 Y_{it1} + \beta_1 Age_{it1} + \beta_2 Age_{it1}^2 + \Theta X_{it1} + \varepsilon_{it}$$
(1)

where *i* indicates individual, *t* indicates survey period (t_1 indicates baseline and t_2 indicates follow-up round), and *Y* is the outcome of interest; in this case binary indicators for own-farm labour and agri-food system employment, and count of own-farm labour days in a given season. Likewise, *X* is the vector of control covariates that includes per capita consumption, gender, education, household size, household head characteristics, and other demographic variables, and ε_u is an idiosyncratic error term. Equation 1 is estimated with a probit model for binary variables (indicators for own-farm labour and agri-food system employment) and ordinary least squares for labour days. The estimated coefficients β_1 and β_2 provide the relationship between age groups and probability of own-farm labour or agri-food system employment. We use predicted conditional probabilities to understand the dynamics of agri-food system

involvement for different age groups. The probability of labour outcome in the follow-up wave is contingent on the baseline status and estimated as follows:

$$P_{r}(Y_{it2} \mid Y_{it1} = 1) = \widehat{\alpha_{0}} + \widehat{\alpha_{1}} + \widehat{\beta_{1}}Age + \widehat{\beta_{1}}Age^{2} + \widehat{\Theta X}$$
$$P_{r}(Y_{it2} \mid Y_{it1} = 0) = \widehat{\alpha_{0}} + \widehat{\beta_{1}}Age + \widehat{\beta_{1}}Age^{2} + \widehat{\Theta X}$$

We take advantage of the longitudinal data to estimate the relationship between age structure and agri-food system involvement over time. For continuous outcome variables, labour days in this case, a panel fixed-effects model is used to estimate the relationship between intensity of own-farm labour and age structure. Equation 2 presents the panel fixed-effects model.

$$Y_{it} = \alpha_0 + \beta_1 Age + \beta_2 Age^2 + \Theta X + \mu_i + \varepsilon_{it}$$
⁽²⁾

For binary outcome variables, a pooled probit model is used. The pooled probit model in Equation 3 is estimated using the quasi-maximum likelihood approach. The time-constant average of all explanatory variables is included in the model and estimated with the correlated random-effect model, also known as the Chamberlin-Mundlak approach

$$P(Y_{it} | x_{it}, \overline{x}) = \Phi(\beta_1 A g e_{it} + \beta_2 A g e_{it}^2 + \Theta X + \Pi \overline{X})$$
(3)

where \overline{X} is the vector of time-constant averages of all explanatory variables in the model, and μ_i is the individual specific effects. In the Chamberlin-Mundlak approach, the time-constant mean is assumed to be normally distributed with mean $\alpha_0 + \pi \overline{X}_1$ and variance σ^2 – i.e.

$$\mu_{i} \sim N(\alpha_{0} + \pi x_{t'} \sigma^2)$$

Predicted probabilities from equation 3 can be used to gauge the likelihood of certain types of employment by age cohort over time. The predicted probability is estimated as follows:

$$P_r(Y_{it} \mid x_{it}) = \widehat{\alpha_0} + \widehat{\alpha_1} + \widehat{\beta_1}Age + \widehat{\beta_1}Age^2 + \widehat{\Theta}\overline{X}$$

4 Results

4.1 Descriptive statistics

Table 5 presents descriptive statistics for variables used in this analysis. Results show that the Tanzanian and Malawian populations are both quite young; an average individual is 26 years old in the first wave and 28 years in the second wave. Household heads are also relatively young, with an average age of 48 years in Tanzania and 44 years in Malawi in the first wave. The population consists of slightly more females than males – 48 per cent males in Tanzania and 49 per cent in Malawi – but only about 20 per cent of the households are headed by females. An average household has about six to seven members, and household sizes remain more or less constant across the two waves.

We also present the summary statistics for participation in agriculture.⁸ Participation in single-occupation farming is higher in Malawi than in Tanzania; it increases over time in both countries. Specifically in the case of Tanzania, participation in single-occupation farming increases from 43 per cent in wave 1 to 46 per cent in wave 2. In Malawi, it increased from 56 per cent in baseline to 64 per cent in the second wave. In contrast, involvement in an agri-food enterprise is higher in Tanzania than in Malawi; in Tanzania, it was 13 per cent in baseline and 18 per cent in the second wave, but it remains constant at 13 per cent in Malawi. This indicates that Tanzania's agricultural sector is more modern and expanding faster than Malawi's. This observation is further supported by percentages of agricultural and livestock-keeping households in the countries. The proportion of agricultural households is smaller in Tanzania than in Malawi and it has been decreasing over time in Tanzania but increasing in Malawi. A decreasing proportion of farming households coupled with an increasing trend in agri-food enterprise involvement in Tanzania indicates that Tanzanian farmers are moving from single-occupation farming to agricultural enterprises.

8. Note that these figures are from the unbalanced sample.

Table 5 Summary statistics

Variables	Tanz	ania	Mal	awi
Variables	Wave 1	Wave 2	Wave 1	Wave 2
	26.58	28.48	26.01	28.00
Age in years	(18.32)	(18.33)	(17.64)	(17.64)
Cander (1 Mala O Famala)	0.481	0.480	0.492	0.491
Gender (1=Male, 0=Female)	(0.500)	(0.500)	(0.500)	(0.500)
Head: Age in years	47.93	48.98	43.79	46.61
Head: Age in years	(14.30)	(14.48)	(14.49)	(14.29)
Formela haad (1, Yaa, 0, No)	0.203	0.212	0.192	0.196
Female head (1=Yes, 0=No)	(0.402)	(0.409)	(0.394)	(0.397)
	6.549	6.787	5.932	6.196
Household size	(3.736)	(4.205)	(2.491)	(2.447)
Single-occupation farming	0.429	0.460	0.564	0.641
(1=Yes, 0=No)	(0.495)	(0.498)	(0.496)	(0.480)
Agri-food enterprise involvement	0.129	0.188	0.137	0.135
(1=Yes, 0=No)	(0.335)	(0.391)	(0.344)	(0.342)
Total days worked in 2 seasons	32.87	28.87	25.86	31.09
Iotal days worked in 2 seasons	(61.19)	(48.31)	(36.97)	(40.05)
Agricultural household (1=Yes, 0=No)	0.750	0.713	0.775	0.791
Agricultural Household (1–1es, 0–100)	(0.433)	(0.453)	(0.418)	(0.407)
Livestock-keeping household	0.583	0.571	0.544	0.560
(1=Yes, 0=No)	(0.493)	(0.495)	(0.498)	(0.496)
	551 044	627 329	164 195	157 319
Per capita consumption (LCU*), annual	(559 564)	(572 649)	(226 892)	(197 790)
Currently attending school	0.339	0.327	0.398	0.368
(1=Yes, 0=No)	(0.473)	(0.469)	(0.489)	(0.482)
	0.656	0.700	0.756	0.759
Rural (1=Yes, 0=Urban)	(0.475)	(0.458)	(0.429)	(0.428)
Observations	13 223	13 223	10 266	10 266

Notes: Point estimates are means. Standard deviations are in parentheses.

*Local currency units: Tanzanian shilling and Malawian kwacha.

Youth participation in agriculture

Our emphasis on youth participation in agriculture is fuelled by assumptions regarding young people's preferences and distaste for work that could be construed as "dirty". While it is reasonable that many youth may not share a passion for agricultural work, evidence does not substantiate the belief that they do not participate. Cross-sectional statistics illustrate that regardless of unobservable interest, agriculture is the largest employer of youth (aged 15-24) compared with any other sector in both Tanzania and Malawi (figure 2).

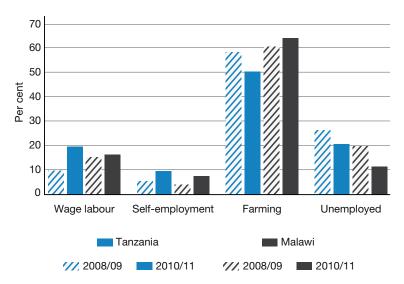
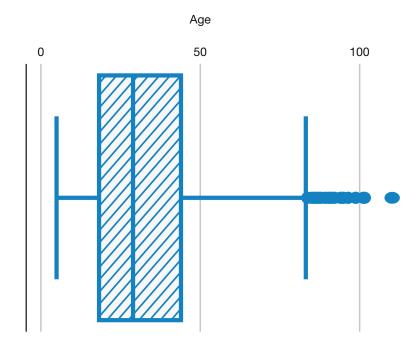


Figure 2. Rural youth participation in different sectors of employment


Using a balanced panel, figure 2 shows that participation in single-occupation farming among rural youth (aged 15-24) is greater than 50 per cent in both countries. Our categorization of the employment sectors implies that any estimates of youth participation tend to be biased downward because any individual who is employed in both own-farm agriculture and wage labour or self-employment would not be counted in the "farming" category. As presented in figure 2, rates of engagement in agriculture are decreasing in Tanzania (i.e. individuals are not necessarily leaving farming but are additionally engaging in wage labour or self-enterprises), yet 59 per cent of Tanzanian youth remained in single-occupation farming between 2009 and 2011. In Malawi, where over 60 per cent of youth are engaged primarily in farming, the sector not only grew, but 70 per cent of Malawian youth remained in farming between 2011 and 2013.

How old is the average farmer?

In 2011, youth and young adults in Tanzania and Malawi made up 47 per cent of the individuals engaged in single-occupation farming. In a pooled sample that contains individuals aged 5 years and above from Tanzania and Malawi, the average age of an individual who engaged only in agriculture is 32 years. We acknowledge that the "youth bulge" in the population distribution skews the sample, but the average age of a **farmer** holds firm regardless of how the population is sliced up.⁹ As illustrated in figure 3, over 75 per cent of those involved primarily in single-occupation farming are under 50, making it difficult to support claims that the average age of African farmers is above 60. Given that these numbers reflect those that are **only** engaged in farming, we can expect that a new generation of farmers is in fact emerging in both Tanzania and Malawi.

^{9.} Though uncomfortable to account for, child labour (6-14) plays a large role in rural agriculture. The average age of children engaged in agricultural activities in Tanzania and Malawi is 11, indicating that younger children also are engaged in agriculture, not simply those post-puberty. When these individuals are dropped from the sample, restricting age to a minimum of 15 years, the new average age of a farmer increases to 36.

Figure 3. Box plot of engagement in single-occupation farming, by age

Rural youth are more likely to be involved in agriculture than be unemployed

Following the rhetoric that farming is dirty and undesirable, there is an implication that youth would rather be unemployed (or job-seeking) than engage in agriculture. Also, youth could consider agriculture as the last resort and may perceive their engagement in the sector as transitional and temporary. However, after taking into account on-farm and off-farm engagement, unemployment among rural youth in Tanzania and Malawi is relatively low despite concerns regarding the dearth of employment opportunities.

In Tanzania, youth unemployment fell from 26 to 21 per cent in rural areas and from 65 to 56 per cent in urban areas between 2009 and 2011. In Malawi, the proportion of unemployed rural youth fell from 19 to 11 per cent between 2011 and 2013, while in urban areas it fell from 54 to 39 per cent. The decreases in the rate of youth unemployment coincide with increases in engagement in agriculture, given that about 40 per cent of the previously unemployed people in Tanzania engaged in single-occupation farming, while in Malawi this number is closer to 56 per cent. In comparison, less than 20 per cent of unemployed youth in both Tanzania and Malawi entered into either wage labour or self-employment, indicating that youth are more likely to enter farming than they are other employment sectors.

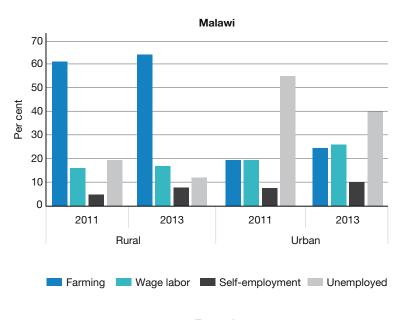
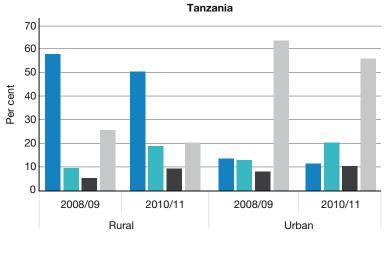



Figure 4. Dynamics of youth employment in rural and urban areas

Farming Wage labor Self-employment Unemployed

Figure 4 shows that youth employment in Tanzania varies widely across rural and urban areas. Over time, only about 25 per cent of rural youth have no documented employment, whereas unemployment among urban youth is about 60 per cent. The high rate of unemployment in urban areas is linked to the much lower participation of urban youth in farming compared with those in rural areas. More than half of rural youth engage in farming, compared with less than 15 per cent in urban areas. A similar pattern holds in Malawi; the proportion of rural youth who are unemployed is less than 20 per cent, compared with more than 45 per cent of urban youth.¹⁰ Over time, unemployment decreases, along with an increase in wage employment and self-employment and a decrease in engagement in farming. This trend is consistent across both countries, indicating increased diversification of their local economies.

It is yet to be assessed whether high unemployment rates in urban areas can be attributed to "true" unemployment or engagement in non-productive activities such as schooling. Future assessments will seek to ascertain this.

From this we can determine that not only are youth in rural areas less likely to be unemployed, they also are less likely to stay unemployed. Furthermore, many of those who were previously unemployed were more likely to enter agriculture than to either obtain wage employment or remain unemployed.

There is considerable mobility towards farming among youth

Table 6 provides figures that indicate the proportion of individuals who moved towards farming, given their previous occupation. The first column, "Farming", provides point estimates of the rate of retention in farming over time. In the subsequent columns, the point estimates are the percentage of the baseline occupation population who moved towards single-occupation farming, given the option to either stay in their baseline sector or move to any other sector – i.e. three options – with the fourth being the loss of a job or choosing not to work.

	Movements					
	Farming	Wage labour to farming	Self-employment to farming	Unemployment to farming		
Tanzania youth (%)	59	35	37	41		
Tanzania young adult (%)	54	28	26	40		
Malawi youth (%)	56	55	57	56		
Malawi young adult (%)	69	38	47	38		

Table 6 Shifts towards farming given baseline occupation

Source: Authors' illustrations.

Assuming that each option carries equal probability (one in four), it can be seen that the choice of single-occupation farming beats every other option, for every single group and sector. If we discount unemployment from the list of options, the probability of youth and young adults participating in farming is equal to or greater than their probability of moving into other sectors. In the case of Malawi, more than half of youth and young adults engaged in other sectors in baseline moved into single-occupation farming.

Table 7 presents point estimates of the movements of youth and young adults out of single-occupation farming to other income-generating sectors or unemployment. When considering the income-generating sectors (wage labour and self-employment), in Tanzania, about 17 per cent of youth engaged in farming in 2009 moved to wage employment in 2011, and 9 per cent moved to self-employment, while nearly 15 per cent became unemployed. Similar patterns hold for Malawian youth, but the point estimates are smaller for each movement, indicating that engagement in farming among youth is more stable in Malawi than in Tanzania.

Table 7 Movements out of farming to other sectors

		Movements				
	Farming to wage labour	Farming to self-employment	Farming to unemployment			
Tanzania						
Youth (%)	17.5	9.05	14.7			
Young adults (%)	24.7	15.5	5.9			
Malawi						
Youth (%)	14.5	7.3	8.7			
Young adults (%)	17.7	10.7	3.0			

Source: Authors' illustrations.

In comparison, young adults in Malawi show more stability regarding participation in farming, but the proportion of young adults who moved from farming to unemployment is much smaller in both countries. In addition, the proportion of young adults moving out of farming to wage and self-employment is also higher than that of youth; for example, about 25 per cent young adults moved out of farming to wage employment, compared with 17 per cent of youth in Tanzania. Similarly, 15.5 per cent of young adults moved from farming to self-employment, compared with 9 per cent of youth. A similar pattern holds in Malawi. Results indicate that the rate of retention in farming is higher among youth than among young adults, and both youth and young adults who move out of farming are more likely to enter other income-generating activities than remain unemployed. While the intensity of mobility towards single-occupation farming from other sectors is encouraging, it does not necessarily mean an increased attraction to farming. It is possible that shifts towards agriculture are largely a result of the loss of baseline livelihood options, rather than attraction to the sector for income-generating opportunities.

Youth participation in the agri-food system

Given the evidence that between 41 and 44 per cent of youth initially engaged in single-occupation farming moved to income-generating sectors, we now examine whether participation in wage labour or self-employment is still within the greater agri-food system or outside it. As previously described, the agri-food system encompasses single-occupation farming, casual labour in farming and engagement in agricultural value chain enterprises. The agri-food system casts a wide net to include all forms of inputs, intermediate outputs, final outputs and value-added services.

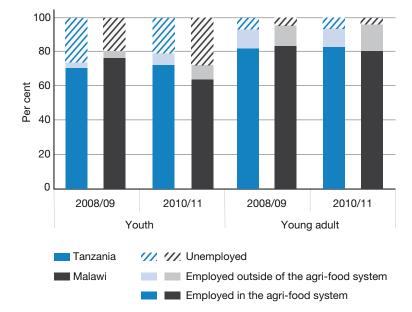


Figure 5. Participation by youth and young adults in the agri-food system

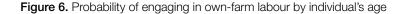
Figure 5 presents participation by youth and young adults in the agri-food system in Tanzania and Malawi. In Tanzania, about 71 per cent of youth are engaged in the agri-food system in 2008/2009 and the proportion increases slightly to 72 per cent in 2010/2011. Despite a small increase in agri-food system engagement, there is a big increase in agrifood enterprise employment. Youth employment in agri-food enterprises increases from 12 per cent in 2008/2009 to 22 per cent in 2010/2011, coupled with a decrease in farming from 59 per cent to 50 per cent. Youth participation in the agri-food system also increased in Malawi, from 77 per cent in 2010 to 80 per cent in 2013, but in contrast to Tanzania, the growth in agri-food system engagement comes exclusively from farming. Youth employment in agrifood enterprises remains stable over time at 15 per cent.

The discrepancy between countries persists over time and age groups. The employment dynamics of young adults are different from those of youth within each country, but the difference between countries is even bigger for young adults' engagement in the agri-food system. Even though about 80 per cent of young adults are engaged in the agri-food system in both Tanzania and Malawi, the composition of employment varies widely. In Tanzania, employment of young adults in agri-food enterprises increased from 29 per cent in 2008/2009 to 41 per cent in 2010/2011, but in Malawi, employment of young adults in agri-food enterprises remains stable at 24 per cent. The results confirm our finding that Malawi's rural economy is very much dependent on agriculture and much less diversified than Tanzania's.

4.2 Empirical results

Results from the empirical analysis are divided into two groups. First, we present the estimated results from the conditional lagged model (Equation 1). Results from the conditional lagged model highlight the dynamics (mobility versus stability) of employment and agri-food system involvement across different age groups. The second half of the empirical results presents the findings from panel data analysis.

Results from the conditional lagged model


Table 8 presents the results from the conditional lagged model. The estimated coefficients provide the probability of an average individual remaining in the baseline sector over time. Results show that the probability of engaging in farming significantly increases with an individual's age but at a decreasing rate. The quadratic relationship between age and farming or agri-food system employment suggests that as people get older they are less likely to enter or remain engaged in these sectors. Specifically, the probability of engaging in farming is higher for individuals from farming households, livestock-keeping households and rural households. As expected, this probability decreases with household well-being status because individuals from well-off households have less incentive (and higher opportunity cost) to work as farm labour. The probability of working in farming as own-farm labour or in the agri-food system also decreases with household size, confirming the hypothesis that family labour supply increases with household size.

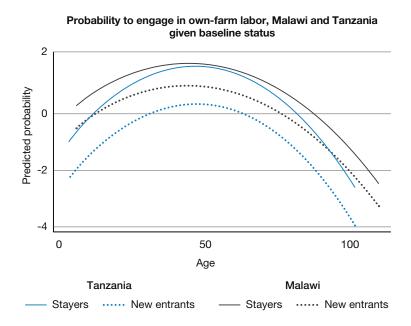

We also examine the stability of engagement in a certain sector over time. In table 8 the coefficient estimates on the first two variables show the probability of remaining in the baseline sector in the follow-up wave. On average, the probability of engaging in farming in wave 2 is 0.82 points higher if an individual is already engaged in farming in wave 1. This indicates that involvement in farming is highly stable, irrespective of age groups. Such a probability is lower in agri-food system employment (0.76 in Tanzania and 0.46 in Malawi), suggesting that employment in the agri-food system is more stable in Tanzania than in Malawi. Stability (the probability of remaining in the baseline sector over time) does vary across waves. Figure 6 presents the probability of engaging in or entering farming as own-farm labour given baseline status. For all age groups, the probability of remaining in farming over time is always higher than the probability of entering farming in wave 2. The probability of remaining engaged in farming increases at an increasing rate for youth and is the highest for young adults in both countries. Similarly, the probability of entering farming (or own-farm agriculture) also increases at an increasing rate for youth and is the highest for young adults. This suggests that, contrary to the myth that young people have a distaste for agricultural work, both youth and young adults are more willing than any other age group to newly enter and remain engaged in own-farm agriculture. Similar results hold for agri-food system employment.

Table 8 Probability	of remaining in the baseline sector	over time

	Farming		Agri-food system (AFS) employment	
	Tanzania	Malawi	Tanzania	Malawi
Farmina in usua d	0.82***	0.81***	-	-
Farming in wave 1	(0.034)	(0.038)		
AFS involvement in wave 1	-	-	0.76***	0.46***
AFS Involvement in wave i			(0.037)	(0.043)
	0.086***	0.091***	0.089***	0.058***
Age	(0.0035)	(0.0044)	(0.0040)	(0.0062)
A 2	-0.001***	-0.001***	-0.001***	-0.0007***
Age ²	(0.00004)	(0.00005)	(0.0001)	(0.00008)
	-0.23***	-0.14***	-0.093***	-0.11***
Log (consumption expenditure)	(0.024)	(0.025)	(0.023)	(0.028)
Agricultural household (1=Yes, 0=No)	1.20***	0.60***	-0.087*	0.045
	(0.058)	(0.045)	(0.047)	(0.050)
	0.20***	0.079**	0.062*	-0.097**
Livestock household (1=Yes, 0=No)	(0.033)	(0.034)	(0.035)	(0.038)
	0.035	-0.089***	0.12***	0.21***
Gender (1=Male, 0=Female)	(0.028)	(0.030)	(0.029)	(0.035)
	-0.0006	0.0011	-0.0038***	-0.0034**
Head: Age in years	(0.0011)	(0.0013)	(0.0012)	(0.0016)
	-0.009	-0.036	0.19***	0.083*
Head: Gender (1=Male, 0=Female)	(0.036)	(0.040)	(0.036)	(0.045)
	-0.033***	-0.037***	-0.0080*	-0.036***
Household size -	(0.0042)	(0.0070)	(0.0041)	(0.0081)
Currently attending school (1=Yes,	0.22***	0.28***	-0.40***	-0.18***
0=No)	(0.037)	(0.048)	(0.045)	(0.062)
	0.56***	0.58***	0.10**	-0.17***
Rural (1=Yes, 0=Urban) -	(0.040)	(0.045)	(0.043)	(0.052)
	-0.14	-0.29	-1.17***	-0.34
Constant -	(0.33)	(0.32)	(0.32)	(0.35)
Observations	13 218	10 174	13 218	10 174

Notes: Standard errors in parentheses. Level of significance * p < .10, ** p < .05, *** p < .01.

Results from panel data analysis

Table 9 presents the results from the panel data analysis. Our main objective is to estimate the probability of engagement in farming and agri-food system employment for different age groups. The estimated results confirm that the probability of engaging in both farming and agri-food system employment increases with age, but at a decreasing rate.

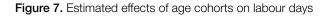
We calculate marginal effects of age for individuals aged 18 and 40 to understand the relationship between age and engagement in own-farming and employment in the agri-food system. For individuals aged 18, a one-year increase in age increases their probability of engaging in farming as own-farm labour by 0.27 points in Tanzania and 0.23 points in Malawi. For individuals aged 40, this probability is 0.17 in Tanzania and 0.016 in Malawi. A similar pattern holds for the probability of being employed in the agri-food system. For individuals aged 18, a one-year increase in age increases the probability of being employed in the agri-food system by 0.13 in Tanzania and 0.06 in Malawi. At age 40, a one-year increase in age has no effect on the probability for Tanzanian individuals and decreases the probability of employment in the agri-food system by 0.02 points for Malawian individuals.

Among other variables, the probability of engaging in single-occupation farming is higher for individuals from agricultural households, livestock-keeping households and rural households. However, none of these variables have a significant effect on the probability of being employed in the agri-food system suggesting that, unlike farming, employment in the agri-food system does not differ by rural area or if the individuals are from agricultural households. Interestingly, an individual's gender has no effect on their likelihood of either participating in farming or being employed in the agri-food system and household size decreases an individual's likelihood of participating in farming as own-farm labour or being employed in the agri-food system.

	Farming		Agri-food system employment	
	Tanzania	Malawi	Tanzania	Malawi
4.70	0.35***	0.40***	0.24***	0.13***
Age	(0.069)	(0.022)	(0.071)	(0.029)
Age ²	-0.0023***	-0.0048***	-0.003***	-0.0019***
Age	(0.0003)	(0.00034)	(0.0004)	(0.00040)
Agricultural bouggbold (1)(co. 0 No)	1.84***	1.07***	0.010	0.11
Agricultural household (1=Yes, 0=No)	(0.093)	(0.064)	(0.075)	(0.067)
Livestock household (1=Yes, 0=No)	0.16***	0.12***	0.028	-0.040
Livestock household (1= res; 0=no)	(0.044)	(0.043)	(0.047)	(0.045)
Log (consumption expenditure)	-0.021*	-0.060	0.017	0.055
	(0.011)	(0.039)	(0.010)	(0.041)
Gender (1=Male, 0=Female)	-0.11	-0.058	0.29	-0.40
	(0.25)	(0.43)	(0.30)	(0.38)
	0.006**	-0.0050	-0.004	-0.0028
Head: Age in years	(0.003)	(0.0042)	(0.003)	(0.0050)
Llood: Conder (1 Mala O Famala)	0.17*	0.0020	0.39***	0.30***
Head: Gender (1=Male, 0=Female)	(0.098)	(0.088)	(0.089)	(0.091)
Household size	-0.021*	-0.11***	-0.017***	-0.020
Household size	(0.011)	(0.016)	(0.003)	(0.017)
	-0.049	-0.067	-0.54***	-0.27***
Currently attending school	(0.050)	(0.066)	(0.069)	(0.088)
	0.15**	0.79***	-0.085	0.028
Rural area	(0.068)	(0.14)	(0.058)	(0.14)
Constant	-5.91***	-2.22***	-2.49***	-1.15***
Constant	(0.19)	(0.30)	(0.16)	(0.32)
Observations	26 346	20 384	26 346	20 384

Table 9 Probability of engaging in a specific sector over time

Notes: Standard errors in parentheses. Level of significance * p < .10, ** p < .05, *** p < .01.


Table 10 presents the estimated relationship between different age groups and involvement in the agri-food system. We divide individuals into five different age categories and estimate the probability of engagement in farming and agri-food system employment across different age groups. The base category is a group of children aged 6-10. Results show that the probability of engaging in farming is the highest for youth in both countries: 0.26 in Tanzania and 0.34 in Malawi. In contrast, the probability of being employed in the agri-food system is the highest for adults aged 35-64. Even though the probabilities for both own-farm labour engagement and agri-food system employment increase with age, being a child or a youth decreases the probability of being employed in the agri-food system.

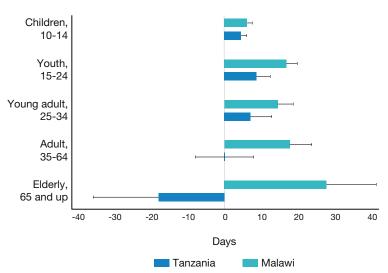

	Farm	ing	AFS emp	loyment
	Tanzania	Malawi	Tanzania	Malawi
	0.16***	0.16***	-0.015**	-0.006
Children, 10-14 -	(0.012)	(0.015)	(0.0060)	(0.0075)
	0.26***	0.34***	-0.016	0.0007
Youth, 15-24 -	(0.020)	(0.023)	(0.012)	(0.015)
	0.26***	0.29***	0.085***	0.037
Young adult, 25-34 –	(0.027)	(0.031)	(0.021)	(0.024)
	0.23***	0.26***	0.13***	0.062**
Adult, 35-64 –	(0.032)	(0.036)	(0.027)	(0.031)
Elderly, GE and over	0.26***	0.29***	0.10***	0.025
Elderly, 65 and over -	(0.036)	(0.039)	(0.035)	(0.037)
	0.35***	0.31***	-0.029*	0.024*
Agricultural household (1=Yes, 0=No) -	(0.017)	(0.017)	(0.015)	(0.014)
	0.034***	0.030***	-0.0005	-0.0075
Livestock household (1=Yes, 0=No)	(0.011)	(0.0093)	(0.0096)	(0.0086)
1 / 11 III X	-0.0047	-0.0059	0.040***	0.011
Log (consumption expenditure) –	(0.0078)	(0.0085)	(0.0074)	(0.0078)
0 // N/ - 0 5	0.0039	-0.00093	0.010	-0.032
Sex (1=Male, 0=Female) -	(0.062)	(0.11)	(0.031)	(0.038)
	0.0021***	0.0037***	-0.0004	-0.0004
Head: Age -	(0.0007)	(0.0009)	(0.0006)	(0.0008)
Used Orada (I. Farrala O. Mala)	0.047**	0.024	0.087***	0.053**
Head: Gender(1=Female, 0=Male) -	(0.019)	(0.020)	(0.019)	(0.017)
	-0.0026	-0.018***	-0.002	-0.0026
Household size -	(0.0024)	(0.0035)	(0.002)	(0.003)
	-0.018	-0.032*	-0.057***	-0.041**
Currently attending school -	(0.013)	(0.018)	(0.0066)	(0.011)
	0.0072	0.17***	0.0007	0.0081
Rural (1=Yes, 0=Urban) -	(0.012)	(0.032)	(0.011)	(0.031)
	0.29***	0.10	0.19***	0.25***
Constant -	(0.063)	(0.069)	(0.056)	(0.058)
Observations	26346	20384	26346	20384
R ²	0.487	0.47	0.140	0.09

Table 10 Relationship between age groups and engagement in the agri-food system (AFS)

Notes: Standard errors in parentheses. Level of significance * p < .10, ** p < .05, *** p < .01.

In figure 7 we present the estimated relationship between age structure and labour days in the agri-food system. In Tanzania, youth work the most days, and the estimated number of labour days is significantly positive for children, youth and young adults, but it is zero for adults and significantly negative for elderly people. In Malawi, the pattern is similar for the first three groups, taking an inverted U-shaped curve, but the estimated number of labour days starts increasing for adults and is the highest for elderly people. The results in the latter case could be concerning, but this result is driven by the fact that *ganyu* labour (the most common form of casual labour in Malawi) is included as part of the agri-food system.

Age structure and labour days in Malawi and Tanzania

5 Conclusion

This analysis examines the dynamics of employment in agriculture and the agri-food system in Tanzania and Malawi by assessing population age structure and movements of youth in and out of agriculture and the agri-food system. Using internationally comparable integrated household and agriculture surveys from Tanzania and Malawi, we discover that in contrast to the widely reported statistic that "the average age of an African farmer is 65 years", the average age of a person who is engaged in farming is 34 years in Tanzania and 31 years in Malawi. In Tanzania, about 12 per cent of the population was employed in the agri-food system, and 49 per cent of the population worked in agriculture by providing own-farm labour in 2008/2009. Categorizing employment into four groups (wage employment, self-employment, engagement in farming, and the residual unemployed category), we find that wage and self-employment of youth and young adults in rural areas has increased over time, along with a subtle decrease in engagement in farming and quite a large decrease in unemployment. Results also indicate that youth aged 15-24 and young adults aged 25-34 comprise more than 26 per cent and 30 per cent, respectively, of the population working in the agri-food system.

Examination of the movements into and out of the agri-food system reveals a moderate degree of stability of youth and young adult participation in farming in both countries. Specifically, 59 per cent of rural youth in Tanzania and 56 per cent of rural youth in Malawi are consistently engaged in farming over time. The perceived stability of youth engagement in farming may not necessarily imply attraction to agriculture because movements across sectors involve transaction costs and rural youth may be unable to afford such costs.

When movement between sectors is considered, interestingly, there is considerable mobility between different sectors of employment. Specifically, more than 57 per cent of the youth who were not involved in the agri-food system during the baseline entered the sector in the subsequent wave, and 12 per cent of the youth involved in the agri-food system during the baseline moved out of the sector in the subsequent wave. Similarly, 15.5 per cent of the youth who worked in own-farm agriculture during the baseline took on wage employment in the agri-food system in the subsequent wave, and 58 per cent of the youth who were wage employed during the baseline started own-farming in the follow-up wave.

Movements from one sector of employment to another may be driven by push factors in the baseline sector or pull factors in the endline sector. Push factors include factors such as low profitability of agriculture and pull factors can include factors such as higher opportunity costs of staying in the current sector. While it is difficult to determine whether either push or pull factors are encouraging movement, it is understood that decisions are largely made between either staying in the baseline sector or moving into single-occupation farming. Results from econometrics analysis largely confirm the findings from descriptive analysis. We find that the probability of engaging in farming and the larger agri-food system increases with age but at a decreasing rate. The probability of engaging in farming is highest for youth and young adults, but the probability of being employed in the agri-food system is highest for adults over the age of 40. We also find that the probability of engaging in farming (or the agri-food system) is highest for individuals who were engaged in farming (or in the agri-food system) in the previous period, confirming a high degree of stability in youth and young adult engagement in farming.

Overall, our findings suggest that youth are much more likely than young adults to move towards single-occupation farming as opposed to another income-generating sector. Even though this finding is encouraging for policymakers who are concerned about the lack of attraction to agriculture among youth, it is likely that the poor economic prospects outside farming are what is driving strong participation in single-occupation farming. Given that increasing youth employment is a priority public policy for the governments of Tanzania and Malawi, it is recommended that these countries attempt to diversify the rural economy by developing the many economic opportunities other than farming. If a wider set of economic opportunities were available, youth and young adults would be more likely to seek opportunities to increase their participation in agriculture and in non-farm income-generating activities.

One of the limitations of this study is that the analysis makes use of only two rounds of data. The analysis presented in this paper provides a baseline of short-term mobility. Availability of data warrants future studies to determine mid-term retention rates of agricultural and agri-food system participation as well as any structural shifts in overall participation rates. Future studies should make use of longitudinal data over a longer period of time to investigate the dynamics of employment in the agri-food system in Tanzania and Malawi, and indeed any other country.

References

Asciutti, E., A. Pont, and J. Sumberg. 2016. "Young People and Agriculture in Africa: A Review of Research Evidence and EU Documentation." No. 28, Institute of Development Studies (IDS). [Accessed December 29, 2017].

Beauchemin, C., and P. Bocquier. 2004. "Migration and Urbanisation in Francophone West Africa: An Overview of the Recent Empirical Evidence." *Urban Studies* 41(11):2245–2272.

de Brauw, A., V. Mueller, and H.L. Lee. 2014. "The Role of Rural–Urban Migration in the Structural Transformation of Sub-Saharan Africa." *World Development* 63:33–42.

Brooks, K., S. Zorya, and A. Gautam. 2013. "Employment in agriculture: Jobs for Africa's youth." 2012 Global Food Policy Report International Food Policy Research Institute. [Accessed December 29, 2017].

FAO. 2014. "Food Security for Sustainable Development and Urbanization: Inputs for FAO's Contribution to the 2014 ECOSOC Integration Segment."

FAO. 2017. "United Republic of Tanzania and FAO: Partnerships for Improved Agriculture." Food and Agricultural Organization (FAO).

Filmer, D., and L. Fox. 2014. "Youth Employment in Sub-Saharan Africa." Africa Development Forum World Bank and Agence Française de Développement.

IFAD. 2018. "The Youth Advantage: Engaging young people in green growth." International Fund for Agricultural Development (IFAD).

ILO. 2017. "Global Employment Trends for Youth 2017: Paths to a better working future." Available at: http://www.ilo.org/global/publications/books/global-employment-trends/WCMS_598669/lang--en/index. htm [Accessed November 27, 2018].

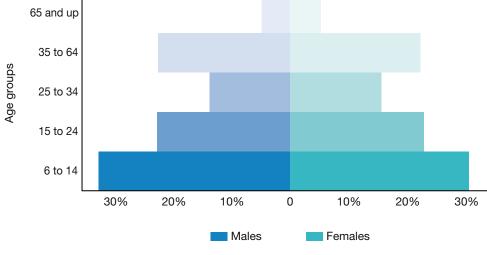
Jayne, T.S., D. Mather, and E. Mghenyi. 2010. "Principal Challenges Confronting Smallholder Agriculture in Sub-Saharan Africa." *World Development* 38(10):1384–1398.

Kafle, K., R. Benfica, and P. Winters. 2018. "Does relative deprivation induce migration? Evidence from Sub-Saharan Africa." 2018 Conference, July 28-August 2, 2018, Vancouver, British Columbia No. 276981, International Association of Agricultural Economists. [Accessed November 19, 2018].

Menashe-Oren, A., and G. Stecklov. 2018. "Rural/Urban Population Age and Sex Composition in sub-Saharan Africa 1980–2015." *Population and Development Review* 44(1):7–35.

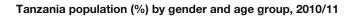
Ministry of Agriculture, Tanzania. 2016. "National Strategy for Youth Involvement in Agriculture (NSYIA) 2016-2021." United Republic of Tanzania. Ministry of Livestock and Fisheries.

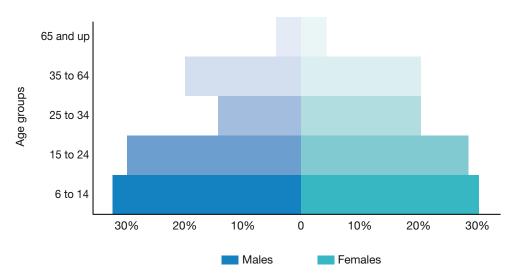
National Youth Council, Malawi. 2013. "Republic of Malawi: National Youth Policy." Ministry of Youth and Sports, Republic of Malawi.

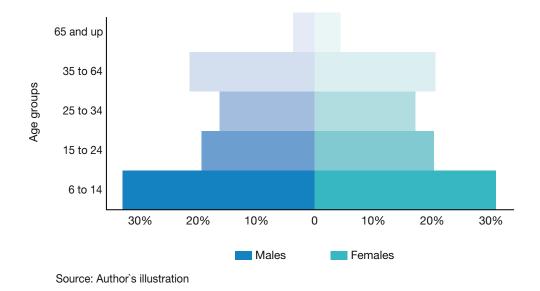

Todaro, M. 2000. "Urbanization, unemployment, and migration in Africa: theory and policy." Reviewing Social and Economic Policies in Africa United Nations. Available at: https://www.popline.org/node/273027 [Accessed November 19, 2018].

White, B. 2012. "Agriculture and the Generation Problem: Rural Youth, Employment and the Future of Farming." IDS *Bulletin* 43(6):9–19.

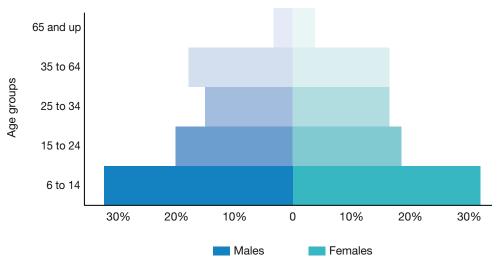
World Bank. 2013. "Unlocking Africa's Agriculgural Potential: An Action Agenda for Transformation." No. 76990, The World Bank, Africa Region.

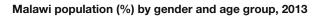

Yeboah, F.K., and T.S. Jayne. 2018. "Africa's Evolving Employment Trends." *The Journal of Development Studies* 54(5):803–832.


Appendix


Tanzania population (%) by gender and age group, 2009/10

Source: Author's illustration





Source: Author's illustration

Malawi population (%) by gender and age group, 2010/11

Source: Author's illustration

The IFAD Research Series

01.	Agricultural and rural development reconsidered
	A guide to issues and debates
	By Steve Wiggins
02.	Migration and transformative pathways
	A rural perspective
	By David Suttie, Rosemary Vargas-Lundius
03.	Fostering inclusive outcomes in sub-Saharan African agriculture
	Improving agricultural productivity and expanding agribusiness opportunities
	By David Suttie, Rui Benfica
04.	The effects of smallholder agricultural involvement on household food consumption and
	dietary diversity
	Evidence from Malawi
	By Rui Benfica, Talip Kilic
05.	Rural-urban linkages and food systems in sub-Saharan Africa
	The rural dimension
	By Karim Hussein, David Suttie
06.	Why food and nutrition security matters for inclusive structural and rural transformation
	By Steven Were Omamo
07.	Measuring IFAD's impact
	Background paper to the IFAD9 Impact Assessment Initiative
	By Alessandra Garbero
08.	Fostering inclusive rural transformation in fragile states and situations
	By Karim Hussein
09.	Social protection and inclusive rural transformation
	By Carolina Trivelli, Silvana Vargas, Jhonatan Clausen
10.	Inclusive Finance and Inclusive Rural Transformation
	By Calum G. Turvey
11.	Food safety, trade, standards and the integration of smallholders into value chains
	A review of the literature
10	By John Humphrey
12.	An evidence-based assessment of IFAD's end of project reporting
10	By Bia Carneiro, Alessandra Garbero
13.	Graduation models for rural financial inclusion By Khalid El Harizi, Xinjia Yan
14.	Disbursement performance of the International Fund for Agricultural Development (IFAD)
14.	An in-depth analysis of drivers and trends
	By Tim Balint, Daniel Higgins, Paola Mallia, Silvana Scalzo, Paul Winters
15.	Remittances, growth and poverty reduction in Asia
10.	A critical review of the literature and new evidence from cross-country panel data
	By Katsushi S. Imai, Bilal Malaeb, Fabrizio Bresciani
16.	Getting the most out of impact evaluation for learning, reporting and influence
10.	Insights from piloting a Participatory Impact Assessment and Learning Approach (PIALA) with IFAD
	By Edward Heinemann, Adinda Van Hemelrijck, Irene Guijt
17.	Population age structure and sex composition in sub-Saharan Africa
	A rural-urban perspective
	By Ashira Menashe-Oren, Guy Stecklov
18.	
	By Seth R. Gitter, James Manley, Jill Bernstein, Paul Winters

19.	Measuring women's empowerment in agriculture A streamlined approach
	By Alessandra Garbero, Emilie Perge
20.	Transformation and diversification of the rural economy in Asia By Roehlano M. Briones
21.	Does relative deprivation induce migration?
	Evidence from sub-Saharan Africa
	By Kashi Kafle, Rui Benfica, Paul Winters
22.	Poverty reduction during the rural-urban transformation
	Rural development is still more important than urbanization
	By Katsushi S. Imai, Raghav Gaiha, Alessandra Garbero
23.	The effect of the sectoral composition of economic growth on rural and urban poverty
04	By Rui Benfica, Heath Henderson
24.	Influence of nutrition-sensitive interventions on dietary profiles of smallholder farming
	households in East and Southern Africa
25.	By Marian Amaka Odenigbo, Patience Elabor-Idemudia, Nigatu Regassa Geda Structural transformation and poverty in Malawi
25.	Decomposing the effects of occupational and spatial mobility
	By Rui Benfica, Margherita Squarcina, Alejandro de la Fuente
26.	Exploration of a methodology for assessing the impact of policy engagement
	What impact and how to assess it?
	By Anna McCord, Ed Heinemann, Lauren Phillips
27.	Asia's rural-urban disparity in the context of growing inequality
	By Katsushi S. Imai, Bilal Malaeb
28.	Understanding the dynamics of adoption decisions and their poverty impacts
	The case of improved maize seeds in Uganda
	By Alessandra Garbero, Pierre Marion
29.	Empowering through collective action
	By Pierre-Marie Bosc
30.	Nutrition-sensitive value chains from a smallholder perspective
	A framework for project design
01	By Isabel de la Peña, James Garrett, Aulo Gelli
31.	Impact of modern irrigation on household production and welfare outcomes Evidence from the Participatory Small-Scale Irrigation Development Programme (PASIDP)
	project in Ethiopia
	By Alessandra Garbero, Tisorn Songsermsawas
32.	Developing country-wide farming system typologies
	An analysis of Ethiopian smallholders' income and food security
	By Esther Boere, Aline Mosnier, Géraldine Bocquého, Alessandra Garbero, Tamás Krisztin,
	Petr Havlík, Thomas Elhaut
33.	The impact of the adoption of CGIAR's improved varieties on poverty and welfare outcomes
	A systematic review
	By Alessandra Garbero, Pierre Marion, Valentina Brailovskaya
34.	Farm size and productivity
	Lessons from recent literature
	By Douglas Gollin
35.	Climate change mitigation potential of agricultural practices supported by IFAD investments
	An ex ante analysis
00	By Meryl Richards, Aslihan Arslan, Romina Cavatassi, Todd Rosenstock
30.	Who works in agriculture?
	Exploring the dynamics of youth involvement in the agri-food systems of Tanzania and Malawi By Kashi Kafle, Neha Paliwal, Rui Benfica
	שי המסווי המווס, וזכוומ דמוויזימו, דונו שכוווטמ

International Fund for Agricultural Development Via Paolo di Dono, 44 - 00142 Rome, Italy Tel: +39 06 54591 - Fax: +39 06 5043463 Email: ifad@ifad.org www.ifad.org

- f facebook.com/ifad
- instagram.com/ifadnews
- in linkedin.com/company/ifad
- ytwitter.com/ifad
- youtube.com/user/ifadTV

