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Executive summary 

This report presents the results of an ex-post impact assessment of the Participatory Small-scale 

Irrigation Development Programme (PASIDP), a project financed by IFAD and implemented in 

Ethiopia between 2008 and 2015. This agricultural project aimed at improving food security and 

increasing income of beneficiaries by providing access to small-scale irrigation infrastructure 

systems in four regions of Ethiopia.  

The objective of the impact assessment was to investigate both the sustainability of the impacts and 

the resilience capacity of beneficiaries in a context characterized by adverse weather conditions.  

An innovative data collection was put in place to study the impact on areas where a protracted 

drought was taking place. In particular, using panel data that allowed one to follow household over 

time, the analysis tested whether the irrigation schemes were able to provide a protective and 

sustained effect towards reducing vulnerability and enhancing smallholders households resilience 

capacity to cope with the longer term variability of the climatic shocks.  

In the face of recurrent climatic shocks across many countries that negatively affect farmers 

income, undermine the impact of investments, IFAD has been promoting the resilience of 

vulnerable smallholders through investments that enhance farmers capacity to mitigate, recover and 

adapt to shocks and chronic stresses.  

Smallholders households and community level responses to shocks often differ widely. Some can 

mitigate the effect of a shock and recover rapidly to a level of welfare at or above pre-shock levels. 

Others may find themselves stuck in a lower level of welfare permanently, a “poverty trap” (Carter 

& Barrett 2006). What allows some households to recover, even prosper, in a shock prone 

environment while others sink deeper into poverty?   

In the context of such welfare dynamics the concept of resilience has gained prominence,  and 

increased popularity in development policy. Barrett and Constas (2014) propose a new theory that 

conceives resilience as “the capacity … to avoid poverty in the face of various stressors and in the 

wake of myriad shocks. If and only if that capacity is and remains high over time, then the unit is 

resilient.” 

Measuring projects’ impact on resilience requires adequate data. One data snapshot does not allow 

one to assess dynamics - e.g. changes - whether households are more resilient after a shock 

occurring and whether the intervention is having a protective impact after the shock in question. 

Research questions of such kind, require at least two data points, one at the time of the shock and 

one after the shock in question. The reality is that a number of impact assessments have sought to 

measure resilience, but are constrained in their reliance on traditional annual datasets, mostly post-
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shock. Concurrently, governments and aid agencies have pioneered  “early warning systems”, 

collecting monthly data on food-prices and other indicators of a potential crisis. Yet this data is 

rarely good enough to answer the questions of interest, and fail to track individual households over 

time.  

The panel data collection consisted of  four rounds, the first, a first round (or baseline) survey 

collected in November 2016, followed  by three follow-up surveys conducted every three months 

until November 2017 precisely with the objective to investigate both the evolution of well-being 

outcomes, agricultural productivity and farmers resilience capacity over four seasons and monitor 

the effectiveness of the irrigation systems over time.  

The findings from this impact assessment offer unique insights both concerning the transformative 

benefits of irrigation projects, the sustainability of such benefits overtime, and also vis a vis the 

measurement of resilience in the context of ex-post impact assessments with quasi-experimental 

designs, using high-frequency data.   

Notably, it was found that in terms of agricultural production indicators, treatment farmers seem to 

remarkably invest on agricultural inputs, have higher yields and this is particularly evident in the 

Dry season which, intuitively, should be the season where the benefits of irrigation systems should 

be felt the most.  

Impacts are also evident across the crop portfolio where value of sales of specific crops (notably, 

grains and cereals, but also vegetables and fruit), are significantly higher for those accessing 

modern irrigation compared to their rain-fed counterparts.  While treated farmers seem to intensify, 

and mostly rely on crop production as their major source of income, their counterfactual 

counterparts resort to non-agricultural income sources, specifically livelihoods activities such as 

wage employment and self-employment .  

As far as economic mobility and poverty indicators are concerned, treated farmers have a higher 

return from productive assets, are more likely to be above the poverty line, and are less likely to be 

transiently poor particularly during the Dry season. In terms of poverty and welfare dynamics, 

treatment farmers are also more likely to exit poverty -  relative to persisting in poverty – in the Dry 

season – compared to their rain-fed counterpart,  especially when the poverty metric is based on 

productive  assets.  

Concerning food security indicators, a key finding is the reduction in the negative coping strategies 

to which households resort in times of distress. Such reduction is particularly significant in the Belg 

season (or the short rainy season), the season immediately following the Dry season, implying that 

there is lagged effect in the food security benefits, whereby treated farmers are resilient after the 

dry season. In addition, this finding also underlines the persistence of the treatment effect  – or 

impact sustainability -  which goes beyond the season of interest, notably the Dry season, and 

manifest itself also in the following season.  
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As far as market access indicators are concerned, market participation regarding crop sales is 

consistently larger for treated farmers compared to rain-fed counterparts, particularly in the Dry 

season and to a lesser extent in the following Belg season.  

A number of resilience metrics were also compared. The PRIME based methodology – a capacity 

based approach – that aggregates three capacities notably, adaptive, transformative and absorptive - 

indicates gains across all seasons for treated farmers compared to counterfactual farmers. These 

resilience gains seem to be consistently larger in the Dry season compared with the other rounds. 

Such findings are not evident in the other resilience metrics, although impacts are present to a 

lesser extent in the Dry season and warrant further investigation. 

Thanks to the panel structure of the dataset, which allows one to examine households status in the 

outcomes of interest across the seasons, and the role of PASIDP, this impact assessment was able 

to study impact dynamics through a growth model where a dynamic panel data model was 

employed, notably the Blundell-Bover system GMM estimator, to assess the impact of PASIDP on 

asset growth, as well as resilience gains, overtime, making full use of the four rounds of data. The 

findings there also unequivocally show the benefits of irrigation on assets growth - which are 

largely positive contingent on the variability of the drought over the seasons. Assets growth is also 

inversely related to initial assets, indicating the wealthier the farmer is at the first round the slower 

the assets growth. This indicate that there is convergence in assets growth. Results also point to the 

fact that the treatment increases resilience capacity gains and that that resilience capacity is a 

function of the previous status and increases over the various seasons.  

This study clearly portrays strong evidence that investing in irrigation is highly transformative for 

farmers, particularly for those at the lower end of the welfare distribution and that implicitly the 

irrigation systems act as a risk management strategy that allows farmers to exhibit positive returns 

even during the climatic shock. In addition, this study highlights the added value of  high frequency 

data collections. This data collection system has the potential to allow one to assess the seasonal 

variation as well as the sustainability of benefits overtime in a context where the drought spells are 

protracted and affect households differentially across the  seasons.  

The policy recommendations from this study are multi-fold. First, focused projects such as the ones 

with irrigation investments are effective at generating returns for smallholder farmers and 

increasing production of high value crops. However, commercialization and marketing support 

continue to be areas of improvement and should be bundled to interventions aimed at improving 

agricultural production to maximize the potential benefits of this increased production. Also, from 

an M&E and operational perspective, projects that aim at enhancing resilience and protecting 

smallholders from climatic shocks need to have different data systems from standard conventional 

M&E. Resilience data must be collected at high frequency in order to capture the impacts of 

stressors and shocks (and responses to shocks) using shock-sensitive indicators. The data must be 
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collected over the long term, therefore ex-ante, rather than ex-post, because vulnerability to shocks 

is the product of slower-moving stressors as well as of long-term, multisector interventions for 

building resilience such as the ones implemented by IFAD-supported projects. In order to minimize 

the costs of such a data collection, specific data should be collected in sentinel sites, or small 

samples, e.g. sites that are strategically selected to monitor risk, shocks and welfare outcomes, 

while maintaining representativeness of key structural characteristics, such as specific agro-

ecologies or livelihood zones, that can be collected in the standard annual surveys such as mid-term 

or completion surveys. Remote sensed data (GIS) can be used to provide objective shocks metrics 

on a more frequent basis. 

Defined by a much sharper focus on altering the dynamics of welfare, resilience-building projects 

require this kind of data structure e.g. high frequency, sustained, long-term surveying of a network 

of sentinel sites combined with standard annual and more occasional surveys such as the usual 

baseline, midterm and completion surveys.  

Sentinel surveys could be implemented on a collaborative basis among the Rome-based Agencies 

(RBAs) as well as nongovernmental organizations (NGOs), and national governments, given their 

mutual interest in monitoring resilience. 
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1. Introduction 

A handful of studies have documented that public investments in agriculture, designed, and rolled-

out to suit local conditions, contribute to increased agricultural productivity and resilience capacity 

of farmers (Asfaw et al., 2012; Azzarri et al., 2015; Minde et al., 2008). Investment in irrigation 

facilities is a common example, which illustrates how public investments in agriculture can 

improve the performance of farmers in the form of increased productivity, across rural areas in the 

developing world. Several empirical studies have found irrigation to have a positive impact on 

agriculture and poverty amongst small-scale farmers (Hussain and Hanjra, 2004; Lipton et al., 

2003; Smith, 2004). Although the returns on investments in irrigation can be potentially high, the 

World Bank (2007) reports that irrigation coverage in Sub-Saharan Africa remains low. With this 

information in mind, a strong case could be made for investing in the expansion of irrigation 

coverage across Sub-Saharan Africa as a means of improving agricultural productivity and 

alleviating rural poverty (Dillon, 2011). 

Out of the approximately 100 million ha of Ethiopia’s land area, according to 2007 country 

estimates from the Food and Agriculture Organisation (FAO), only about 35% were considered 

arable. Crop production represents about 70% of the entire agricultural sector contribution to about 

45% of the GDP of Ethiopia. Notwithstanding laudable growth rates averaging 6.7% between 1996 

and 2006, poverty level in Ethiopia is still considered very high, worse off in the rural areas. The 

cause of this high level of rural poverty in Ethiopia among other reasons, is often attributed to the 

widespread low-input, low-output rain dependent subsistence farming systems, diminishing farm 

sizes, drought and drought induced famines, rapid population growth, environmental and land 

degradation and poor irrigation and water facilities.  

Ethiopia's geographical and climatic attributes provide a greater amount of rainfall than the rest of 

Africa on average (Kassahun, 2007). Nonetheless, the agricultural sector in the country is 

constantly stricken by frequent drought and soil degradation (Matouš et al., 2013). These peculiar 

shocks to agricultural production are closely linked to the persistence of poverty in rural Ethiopia. 

Also, insufficient or lack of functioning irrigation infrastructures exacerbates the presence of 

poverty amongst rural farmers, especially among the poorest of the poor (Del Carpio et al., 2011; 

Escobal, 2005). Despite having relatively abundant water resources with irrigation potential, a 

report by the World Bank (2006) shows that only 5% of irrigable land are covered with irrigation in 

Ethiopia.  

Poverty eradication being the main developmental objective, in September 2006 the government of 

Ethiopia adopted the Plan for Accelerated and Sustained Development to End Poverty (PASDEP) 
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document, drafted by the country’s ministry of finance and economic development in consultation 

with other stakeholders and development partners. The plan was to be Ethiopia’s guiding strategic 

framework for a five-year period 2005/06 – 2009/10, with an ultimate objective to eradicating 

poverty and outlining the major focus programs and policies to achieve that. According to the plan, 

it was expected that in order to achieve the goal of halving poverty in Ethiopia by 2015, the 

economy of Ethiopia must sustain a growth rate of 6 to 7% annually, to be upheld by simultaneous 

sustained growths in the agricultural sector. In view of that, the major plans focused on to secure 

sustained development in the agricultural sector including the expansion of small and medium scale 

irrigation and water conservation programmes, and ensuring that natural resources are utilized 

judiciously. At the end of the defined period in the PASDEP plan, the government of Ethiopia 

planned to support the development of irrigation schemes covering about 322,630 ha of irrigable 

land in Ethiopia. 

Tailored around the PASDEP – a plan that projects an incorporation of an additional 1.2 million 

hectares of land under irrigation by 2015, the Participatory Small-Scale Irrigation Development 

Project (PASIDP) was crafted. The primary goal of the PASIDP was to improve welfare and food 

security of rural households residing in drought prone areas of selected districts in four regional 

states of Ethiopia, through participatory small-scale irrigation development. Amongst others, some 

of the PASIDP approaches to achieving the goal were to: innovatively build on indigenous 

knowledge; promote beneficiary participation in the selection, construction, operation, maintenance 

and management of irrigation schemes; and secure communal ownership through grassroots 

organisations such as water users’ association. Implemented from March 2008 to September 2015, 

the PASIDP project constructed a total of 121 irrigation schemes and benefitted about 62,000 

households. 

It is often argued that access to adequate water supply through irrigation infrastructures can help 

rural farmers improve their welfare, agricultural production and resilience. In the case of rural 

Ethiopia, several studies have reported positive effects of small-scale irrigation on food security 

and income from agricultural production (Ersado, 2005; Van Den Burg and Ruben, 2006; Tesfaye 

et al., 2008; Bacha et al., 2011; Aseyehegu et al., 2012). Howbeit, most of these studies assessing 

impact of investments in rural irrigation infrastructure do not incorporate either valid comparison 

groups or randomize the allocation of individuals or local communities that receive benefits from 

irrigation projects. Accordingly, to supplement an ex-post impact assessment for the PASIDP 

project that was conducted as part of the IFAD9 Impact Assessment Initiative , a high-frequency 

data was collected to particularly assess the sustainability of impact and estimate poverty and 

resilience outcomes. This study is thus an additional impact assessment where a lab-in-the-field 

experiment was run and a high-frequency dataset was collected to investigate the relationship 

between farmers' resilience profiles, risk preferences and agricultural productivity and well-being 
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outcomes. The novel high-frequency dataset consists of a baseline survey collected in November 

2016, and three follow-up surveys conducted every three months until November 2017.This study 

thus complements the small but growing literature that analyse the impact of irrigation projects 

(Del Carpio et al., 2011; Dillon, 2011; Rejesus et al., 2011). 

This study examines whether the small-scale irrigation schemes, along with other capacity building 

and training activities offered as part of the PASIDP project,  sustainably impacted beneficiaries in 

terms of providing them with more stable and increased income through increased agricultural 

production and household consumption, and enhanced smallholders resilience capacity to adverse 

shocks over a period of 12 months.  

The following sections of this report, highlight in details the specifics of the project, including the 

theory of change and research questions used to assess the project’s impact, the data and 

methodology utilized to appraise the impact of the project and finally the results and the discussion 

of the findings on the project’s impact. 
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2. Theory of change and main research questions 

2.1 PASIDP theory of change 

The PASIDP project was launched, as part of Ethiopia’s second-generation Poverty Reduction 

Strategy Paper (also referred to as the Plan for Accelerated and Sustainable Development to End 

Poverty (PASDEP)), with an overall objective of reducing rural poverty. To reduce rural poverty, 

the project aimed at improving rural household food consumption and agricultural revenue mainly 

through expansion of traditional irrigation systems and development of new small-scale irrigation 

systems. 

The project comprised of three main components namely (a) institutional development, (b) small-

scale irrigation scheme development and (c) agricultural development. The institutions’ 

development component supported a highly participatory approach to small-scale irrigation 

development through the formation of WUA's and community empowerment, while strengthening 

institutional capacity at the grassroot level and at the regional level. The small-scale irrigation 

development component improved the catchments area planning of small-scale irrigation schemes 

covering over 12,000 hectares of irrigable land, supported the construction of small-scale irrigation 

schemes and improved scheme-to-market access roads. The agricultural development component 

involved activities that strengthened agricultural support services, improved farming practices 

particularly in seed production systems, post-harvest management, watershed-based soil and water 

conservation and promoted home gardens for women.  

For the development and management of the small-scale irrigation schemes, the project followed a 

participatory approach to ensure a sense of ownership and control in the management of the 

irrigation structures created and the soil conservation works to take care of the pitfalls of irrigated 

farming. At the start, food-deficit woredas (districts) under the Productive Safety Net Programme 

(PSNP) that are high density, drought prone and food insecure were selected to participate in the 

project. Then, following a participatory approach, the woreda and kebele (sub-districts) officials 

along with community leaders, selected the type of small-scale irrigation scheme most appropriate 

for the area based on the local conditions and implementation capacity of the targeted beneficiaries. 

To supplement the development of the small-scale irrigation schemes, the project implementation 

officials and the community leaders selected the most suitable training activities to offer to project 

beneficiaries. 

Project’s interventions, which include constructing irrigation schemes, forming WUA's, training of 

WUA leaders and members, and providing capacity building and training activities to farmers, 

should have helped the beneficiaries of the project in the following ways. First, the WUA's were 

formed within each community that receives the project. Second, the project’s extension agents 

trained WUA leaders and members on ways to efficiently and effectively manage and distribute 
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water. Third, capacity building activities and skills training were provided to the beneficiaries to 

increase their knowledge and awareness on agricultural technologies and improved practices. And 

finally, with a well-functioning irrigation system in place, project beneficiaries would obtain (1) a 

more constant supply of water, (2) substantially higher supply of water overall, and (3) timely 

water supply for agricultural production over the course of the cultivation seasons. 

Given the components of the project and the details of activities involved, the project’s theory of 

change can be summarized as in Figure 1. 

 

Figure 1: PASIDP's theory of change 
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The agricultural development component of the project was designed to stimulate the adoption of 

agricultural technologies and improved practices among smallholder farmers. These technologies 

and practices were expected to sustainably increase productivity, boost adaptive capacity, food 

security, resilience of small holder farmers and enhance achievement of national food security and 

development goals (FAO, 2009). The small-scale irrigation schemes, along with other capacity 

building and training activities offered as part of the project were expected to help their 

beneficiaries have more stable and higher income level by increasing agricultural production, 

increase household consumption, and improve their resilience to negative shocks, notably drought,  

by allowing them to cope and recover from them  (Ersado, 2005; Van Den Burg and Ruben, 2006; 

Tesfaye et al., 2008; Bacha et al., 2011; Aseyehegu et al., 2012).  Project interventions of such kind 

should also have allowed beneficiaries, at the bottom end of the income distribution to move out of 

poverty.  

Within the context of the PASIDP project, the development of small-scale irrigation schemes 

should have allowed farmers with access to irrigation to take advantage of the improvements in 

water supply to adopt risk management (ex-ante) strategies in preparation for shocks, and adopt 

risk coping (ex-post) strategies in response to shocks. As climate is rapidly becoming a major 

constraint to farmers who rely heavily on agriculture, the reliance on sustained irrigation water 

supply for agriculture is seen as one adaptation option to the variability in climate (Di Falco and 

Veronesi, 2014). Other forms of adaptation may include soil conservation measures 

(Kurukulasuriya, 2011) and switch of crop choices to more higher-valued crops (Seo and 

Mendelsohn, 2008). On the one hand, as a means to foster the adoption of risk management 

strategies, farmers with access to irrigation are better able to grow crops throughout the year, 

allowing them to have greater opportunities to earn income from selling their crops rather than 

relying mostly on water from rainfall. On the other hand, irrigation may also help beneficiaries 

reduce the need to adopt negative risk coping strategies such as sale of assets, reduction of 

consumption, or migration to other areas in search of other wage opportunities.  

The effects of small scale irrigation scheme development can have a heterogeneous impact on 

project beneficiaries (Tucker and Yirgu, 2010). Specifically in the case of small-scale irrigation in 

Ethiopia, Kaur et al. (2010) identify that pastoralists are the ones most affected by increasing 

climate variability as they require water for their grazing land and livestock herds. Tucker and 

Yirgu (2010) report that more well-off farmers usually receive higher benefits from an irrigation 

project, since they have greater means to take advantage of the improvements in the supply of 

water by investing in productive farm inputs, renting additional land, and hiring additional labour 

to work on their farms. 

However, for the irrigation development to have an impact on the beneficiaries, an important 

assumption is the adoption of agricultural technologies and practices that are complementary to 
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irrigation. The lack of adoption of other agricultural technologies complementary to irrigation, 

which might be necessary to fully harness the potential of irrigation, might hinder the full potential 

impact of irrigation projects (Byerlee and Polanco, 1986; Mann, 1978). Also, a sizable body of 

literature has documented that the decision to adopt a new technology may be driven by individual 

unobserved characteristics (Bandiera and Rasul, 2006; Liverpool and Winter-Nelson, 2012; 

Songsermsawas et al., 2016). One component of the individual unobserved characteristics of the 

household is their risk preferences. Research has shown that the adoption (or lack, thereof) of other 

technologies complimentary to irrigation is correlated with individual risk preferences or ambiguity 

aversion (Leathers and Smale, 1991; Esrado et al., 2004). Thus, differential risk preferences or 

ambiguity aversion behaviour among farmers might help explain the heterogeneity in the impact of 

irrigation projects.  

 

2.2 Project coverage and targeting 

The PASIDP project was approved in 2008, and closed in 2015. During this time, 121 schemes 

were constructed and the total land area under irrigation increased by more than 12,000 hectares. 

The PASIDP project is estimated to have benefited 311,000 individuals in 62,000 households. With 

a total cost of US$ 57.8 million, the activities implemented by the project reached more than 

62,000 beneficiary households in four regions (Amhara, Oromia, SNNPR, and Tigray) of Ethiopia, 

which were selected by the Government of Ethiopia (GOE). In Table 1, the distribution of PASIDP 

irrigation schemes is presented by region and by type of irrigation schemes chosen to be 

constructed. Figure 1 presents the locations of the irrigation facilities constructed and upgraded as 

part of the PASIDP project. 

The targeting strategy of PASIDP project was designed to ensure the inclusion of resource poor and 

vulnerable farmers and women. Poor households rarely own land and have sufficient access to 

agricultural inputs and are hence rarely included in irrigation schemes. To overcome this constraint, 

the project introduced a range of small scale and relatively low-cost irrigation schemes that pose 

low entry barriers to the poor. Additionally, the project had a capacity-building component on 

irrigated farming and water management to promote irrigation schemes that are owned and fully 

operated by poor farmers. As women are the most vulnerable group of people in the communities 

covered by the project, the project also specifically designed a number of activities for women. 
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Table 2.1: Distribution of PASIDP Irrigation Schemes 

Region Scheme Type Number of Locations 

Amhara (28 schemes) 

River Diversion 26 

Spate 2 

Oromia (30 schemes) 

River Diversion 20 

Spate 8 

Spring 2 

SNNPR (17 schemes) 

River Diversion 12 

Spate 4 

Spring 1 

Tigray (46 schemes) 

River Diversion 21 

Spate 4 

Pump Supported 14 

Shallow Well 7 

Total  121 

 

 

Figure 2.1: PASIDP small-scale irrigation locations (Source: IIASA) 
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2.3 Research questions 

Drawing from the theory of change explained above, this impact assessment seeks to assess the 

sustainability of the impacts over a 12 months period. This periods spans 4 agricultural seasons. 

Specifically:  

Question 1: What is the impact of PASIDP on beneficiaries’ levels of cash input expenditures over 

the 12 months period and the four seasons of observation? 

Question 2: Have the cultivation areas of PASIDP beneficiaries expanded as a result of the project? 

Is there a differential impact by season?  

Question 3: Have the agricultural productivity levels of PASIDP beneficiaries increased as a result 

of the project? Are these levels affected  by seasonal variation?  

Question 4: Have the PASIDP beneficiaries diversified their crop cultivation (growing more types 

of crop) as a result of the project? What is this impact by season?  

Question 5: Have the levels of agricultural revenue among PASIDP beneficiaries increased as a 

result of the project?  

Question 6: Have the consumption levels of food and non-food items among PASIDP beneficiaries 

increased as a result of the project? 

Question 7: Has the ability to adopt risk coping and risk management strategies among PASIDP 

beneficiaries increased as a result of the project? Is this different across seasons? 

Question 8: Has the resilience level of PASIDP beneficiaries increased thanks to the interventions 

received? What are the resilience levels over the course of the seasons?  
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Question 9: Are there seasonal variations vis a vis PASIDP beneficiaries capability to move out of 

poverty compared to their counterfactual farmers? What is the evidence on  economic mobility 

indicators?  

3. Impact assessment design: Data and methodology 

3.1 Data 

Identifying the impact of the PASIDP project was challenging due to several reasons. First, the 

project contained multiple components, and the details of project delivery and project 

implementation varied according to the capacity of local institutions, timing, geographical 

landscape, characteristics of beneficiary, and selection of capacity building or training activities 

offered.  Second, there was insufficient documentation about the project's target group, targeting 

strategy, list of activities offered, and list of beneficiaries.  Third, project interventions were 

delivered in an ad-hoc fashion, which is not uncommon in the case of irrigation or other 

investments related to infrastructure that are subject to varying uncertainty regarding engineering 

complexity, procurement process of construction firms, length of construction times, among others. 

The non-random nature of project placement is particularly important for impact evaluation since 

the presence of an irrigation project is likely to be correlated with geographical suitability, 

unobservable characteristics of households that lead to participation in the project, and pre-existing 

local conditions such as access to markets and roads (Dillon, 2011).  

Hence, the ex-post impact assessment of PASIDP adopted a mixed method approach, collecting 

both qualitative and quantitative data in order to strengthen its design.  This impact assessment 

began with a qualitative survey that was done in 2016 to create a better understanding of the project 

targeting strategy, the implementation details, and the channels through which the project activities 

affect the changes in the key outcome indicators, followed by a quantitative survey, also conducted 

in 2016, which aimed at providing an assessment of the overall impact of the project  (see Garbero 

and Songsermsawas: IFAD9 Impact Assessment Brief - Ethiopia).The methodology of the 

qualitative study included a series of narratives from focus-group discussions (FGD's) and key-

informant interviews (KII's). The results from the qualitative study documented positive impacts of 

the project on agricultural production, both in terms of yields, crop income, and diversification.  

This study complemented the quantitative survey that was conducted in 2016, and had an 

innovative data collection strategy where high frequency data (e.g. quarterly data) was collected 

across four rounds over a 12-month period . Data was collected on one entire year to capture the 

seasonal variation of the outcomes within different agricultural cycles and assess to what extent 

seasonal variation in the climatic shocks could affect agricultural outcomes and smallholders 

resilience Previous studies have documented that traditional household surveys conducted annually 
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are necessary to estimate the impact of irrigation projects (Dillon, 2011; Del Carpio et al. 2011). 

However, the study of resilience warrants high-frequency, resilience-related data, e.g. low burden 

monthly or quarterly surveys administered by local village-based enumerators. Equipped with 

tablets, enumerators in the field administer a survey about a household’s well-being, shocks 

experienced, and asset levels. The data are immediately uploaded to a remote server, allowing near 

real-time monitoring which can be used by agencies to launch targeted policy interventions. Annual 

surveys may be inadequate to assess the impact of irrigation projects on project outcomes such as 

agricultural production and income, household's consumption, and resilience as such outcomes 

usually vary greatly within the same year or cropping season in response to agro-climatic or 

economic shocks. ,  

The increased volatility and variability of weather shocks in Ethiopia and the seasonal response of 

agricultural outcomes of smallholders beneficiaries therefore provides the rationale for conducting 

this study to capture the sustainability of the irrigation benefits.  The literature has also stressed the 

need for more frequent data collection systems, in a context of an evaluation  of the Nutrition 

Surveillance Program (NSP)  in Bangladesh (Barrett and Headey, 2014). There, a high-frequency 

dataset revealed a considerable difference in measuring child nutritional outcomes, once compared 

with  traditional annual data measured at two points in time (Figure 3.1 – panel A). Note how,  

high-frequency household surveys  can lead the policy maker to complete different conclusions 

regarding trends in nutritional outcomes (Figure 3.1 –panel B). Another study by McKenzie (2012) 

called for multiple rounds of data collection at short intervals to measure outcomes that were 

relatively noisy, and less correlated with time such as business profits, and household expenditures. 

This can allow researchers to assess the variability of treatment effects overtime 

 

Figure 3.1: Wasting prevalence of children in Bangladesh from a study by Bloem, Moench-

Pfanner, and Panagides (2003) 

 

 

 

 

 

 

 

 

 



17 

 

 

As far as this study is concerned, a high-frequency survey collected information from randomly 

selected beneficiary and non-beneficiary households from the four regions covered by the project. 

The process through which the beneficiary and non-beneficiary households were sampled was 

designed to identify direct impacts; comparison farmers were selected as those who were not 

exposed to the project activities both directly and indirectlyin such regions. Given that households 

that reside in the same kebele as the treatment group have a higher probability of being exposed to 

the project activities indirectly, the impact assessment relied on an identification strategy that 

randomized the selection at the kebele level. To overcome the problem of contamination, the 

control group was selected from kebeles that did not benefit from the project, but were located in 

the same woreda as the kebeles that benefited from the project to account for similarities in the 

agro-ecological context. The random selection of the Kebeles was also implemented with a 

selection-on-observables design to ensure the estimation of the impact was free from selection bias. 

Therefore, the sampling frame of the control kebeles included kebeles which had similar 

characteristics as the beneficiary kebeles in terms of agro-climatic conditions and agricultural 

practices as indicated by NDVI and precipitation levels. To further confirm the similarity of the 

kebeles in the treatment and control groups, the local project management units were consulted to 

validate the selection of the counterfactual. 

In general, the selection of beneficiary and non-beneficiary households followed a two-stage 

stratified sampling by region, agro-ecological zone, and precipitation levels. First, from the full list 

of 105 kebeles with small-scale irrigation schemes built by PASIDP as shown earlier in Table 1, a 

number of selection criteria were applied to arrive at the final list of candidate locations that the 

survey would have covered. These selection criteria were: 

 The scheme was considered to be functional by the program management unit (PMU) for 

more than one year. 

 The projected abstraction rate of the irrigation scheme was not too high (no greater than 

the 90th percentile ranks of all irrigation schemes); which would prevent the random 

selection of irrigation schemes that may not be representative of the majority of the 

schemes built by PASIDP. 

 The information regarding the size of command areas after the construction of the 

irrigation scheme was available. 

After applying these three criteria, 93 kebeles remained in the sampling frame of the beneficiary 

kebeles from a total of 105 kebeles in the four regions. Then, to select a counterfactual Kebele with 

similar NDVI and precipitation levels as the sampled project kebeles, average normalized 

difference vegetation index (NDVI) and average precipitation data of each kebele was matched to 

the list of project kebeles. After verifying that all the kebeles in each region had similar NDVI and 

precipitation values, equal number of beneficiary and non-beneficiary kebeles were randomly 
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selected by stratifying the kebeles according to precipitation levels. Approximately 10 beneficiary 

kebeles were randomly selected per region from the 93 treated Kebeles to obtain a sufficiently 

representative sample of all kebeles covered by the project. In addition, 10 control kebeles were 

randomly sampled from non-beneficiary kebeles that had similar agro-climatic indicators, 

geographical landscape, and agricultural activities.  After selecting the Kebeles, around 13 

households were randomly selected out of the total 300 to 400 households living in each 

beneficiary and non-beneficiary kebeles. In total, 1,033 beneficiary and non-beneficiary 

households were sampled from the four regions, as shown in Table 3.1 below.   

 

Table 3.1: Sample distribution by region before matching 

Region 

Treatment Control 

Total 

HHs Kebeles HHs Kebeles 

Amhara 130 10 130 10 260 

Oromia 129 10 130 10 259 

SNNPR 128 10 126 10 254 

Tigray 130 10 130 10 260 

Total 517 40 516 40 1,033 

 

In summary, the beneficiaries (treatment group) resided in areas that had a functioning PASIDP 

irrigation scheme in place for at least one year to ensure that the benefits from irrigation to their 

agricultural activities could be observed. The non-beneficiaries (control group) resided instead in 

areas without any PASIDP-related activities, but with similar agro-climatic indicators, geographical 

landscape, and agricultural activities.  

3.2 Questionnaire and impact indicators 

The high-frequency data contained detailed information on access to irrigation water supply, 

agricultural production and household expenditure, along with a full set of household-level data 

such as household demographics, social and economic characteristics, and special modules on risk 

management strategies, coping strategies and self-perceived shocks which were measured across 

four rounds. This information was used to construct a number of impact indicators and generate a 

wide range of household level explanatory variables to be used in the analysis. Self-reported shocks 

in the survey were also complemented with an objective shock measure, notably the Standardized 

Precipitation Evapotranspiration Index (SPEI), which was used as a covariate in the analysis. Such 

indicator is an extension of the widely used Standardized Precipitation Index (SPI). The SPEI is 

designed to take into account both precipitation and potential evapotranspiration (PET) in 

determining the extent and severity of drought. The parameters of the SPEI are a time-series of 

total monthly precipitation (P) and monthly potential evapotranspiration (PET).  



19 

 

 

This impact assessment focused on measuring  impact of the PASIDP project on two main sets of 

outcomes. While the first set of outcomes related closely to the main goal of the project, which is to 

reduce poverty by raising income, measured in terms of agricultural production and household 

consumption, the second set of outcomes, though less examined in previous literature, focused on 

resilience metrics.  

 

Agricultural production, intensification and input use 

To measure agricultural production, indicators concerning crop and livestock production were 

employed. The crop production related variables were constructed for each season covering the 

crop cultivation season prior to each survey round. As far as crop production was concerned, crop 

input, crop yield (kg/ha) and value of crop production were used. To measure agricultural 

productivity, the rate of production for given inputs such as seeds, fertilizers, and pesticides was 

used. For livestock production, household livestock ownership and the number of livestock units 

owned were used. As a measure of livestock units owned, the tropical livestock unit was 

constructed by assigning weights to each livestock type.  

In addition to generating an increase in agricultural production, better irrigation infrastructure and 

reliable water supply also enhance use of other inputs like land, fertilizers and pesticides. To 

estimate the projects impacts on such outcomes, agricultural intensification was additionally 

assessed. Agricultural intensity is broadly referred to as the ratio of inputs and outputs within an 

agricultural system either in terms of yield per land area and per input unit (Herzog et al., 2006). 

Alternatively, it can be defined as the sum of various categories of input costs and the total 

cultivated area of the farm (Teillard et al., 2012). Hence, both output-oriented and input-oriented 

measures were used to assess the agricultural intensity. 

 

Economic mobility: income, savings and assets-based indicators 

This impact assessment measures the impact of the project on economic mobility over time using 

household income, savings and assets as a proxy. All three indicatorswere calculated at the 

household level with a reference period of four months representing the season prior to each data 

collection round. For assets,  additional 12 month recalled data was collected for the period 

preceding the first round of data collection.   

The total household income was calculated as the sum of gross income from crop production, 

livestock production, agricultural and non-agricultural wage employment, self-employment, 

transfer and other income source. Savings include household's total amount of cash savings in both 

formal and informal financial institutions. As far as assets indicators were concerned, durable, 

productive, livestock and overall assets indices were computed using principal components analysis 
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(PCA) and polychoric factor analysis.  Such data reduction methods assign weights to the counts of 

each asset item based on the household distributions for each round.  

 

Poverty reduction indicators 

Although it is well recognized that poverty is a multidimensional concept, prior empirical work on 

poverty measurement is mostly based on income, consumption or assets-based indicators. While 

acknowledging the importance of non-monetary dimensions of poverty, the focus in this impact 

assessment is on asset-based poverty. Asset-based poverty measures measure the extent to which 

households have a stock of assets that is sufficient to sustain a minimum level of consumption 

during periods of transitory shocks. 

Asset based poverty indicators were constructed based on the indices discussed above for each 

round of data collection using relative poverty lines that were calculated based on the assets 

distribution at baseline (obtained through recall data), setting the poverty thresholds at 40th and 

60th percentiles of such distributions. All four asset indices are used to check the sensitivity of the 

poverty classification to the inclusion of different assets in the indices. 

Based on the asset-based poverty indicator variables, households were then classified into four 

groups: (1) households who moved out of poverty in each consecutive round (if households were 

below the poverty line in the previous round and were above the poverty line at the next round), (2) 

households who stayed poor (if households remained below the poverty line in two consecutive 

rounds), (3) households who stayed non-poor (if households remained above the poverty line in 

two consecutive rounds), and (4) households who moved into poverty (if households are above the 

poverty line in the previous round and are below the poverty line in the consecutive round).  These  

indicators are particularly relevant for an analysis of poverty dynamics over the different seasons. 

 

Resilience 

Resilience, similar to other well-being indicators, is a multidimensional concept (Sen, 1985). 

Following the definition of resilience provided by Barrett and Constas (2014), where resilience is 

conceptualized as smallholders capacity to positively react from shocks and recover their pre-shock 

level of income or food security, there can be at least three possible types of capacity strengthening 

mechanisms that can help increase farmers resilience (Mitchell 2013). Absorptive capacity refers to 

"the ability of a system to prepare for, mitigate or prevent the impacts of negative events" (Cutter et 

al. 2008). For example, farmers might harvest their crops earlier than usual during a bad year to 

prevent additional crop losses. Adaptive capacity may be defined as "the ability of a system to 

adjust, modify or change its characteristics and actions to moderate potential future damage and to 

take advantage of opportunities" to maintain the same level of well-being (Béné et al. 2012). For 

instance, farmers might adopt drought-tolerant crop varieties in response to growing climate 
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vulnerability. Transformative capacity is the "ability to create a fundamentally new system so that 

the shock will no longer have any impact" (Béné et al. 2012). Farmers within a community may 

increase their transformative capacity by engaging in a community-based forest conservation 

program to prevent excessive logging within the community. It is important to note these three 

types of mechanisms that enhance resilience are not mutually exclusive, and in many instances, 

may take place concurrently. 

To date, scholars have developed several approaches that collect a range of indicators  to estimate 

resilience. The wide range of methodologies allow researchers and practitioners to estimate 

resilience indexes wherebythe relevant indicators are collapse into a single indicator variable, 

which is then employed either as a predictor variable or as a dependent variable contingent on 

whether resilience is an outcome or an explanatory variable in the analysis of interest. Given the 

different  methodologies available to date, this impact assessment undertook an innovative 

approach by including in the survey instrument various indicators that could lead to the different 

estimation procedures underlying the various resilience metrics available in the literature.  The first 

approach, referred to as the Resilience Index Measurement and Analysis (RIMA) model, employs a 

multidimensional poverty analysis approach using a multivariate statistical technique (Alinovi et 

al., 2010; Bauer et al., 2011; FAO, 2013). A second approach, which is an updated version of the 

RIMA model, is the Resilience Index Measurement and Analysis – II (RIMA II) model (d'Errico et 

al., 2015a; d'Errico et al. 2015b; Kozlowska et al., 2015; d'Errico et al., 2016; FAO, 2016) which 

refined the estimation framework for the resilience model. The third approach, employed as part of 

a household survey conducted in Ethiopia from the Pastoralist Areas Resilience Improvement and 

Market Expansion (PRIME) project (Frankenberger, 2015) is to use a principle component analysis 

(PCA) to combine different sub-indices to form a single resilience index. Last, we present a fourth 

approach which employs a conditional moment-based econometric approach to compute 

household-level resilience index (Cissé and Barrett, 2016; Phadera et al., 2017).  These resilience 

metrics are fairly similar in the data requirements needed for their computation. Therefore, given 

also, the lack of consensus for an endorsed resilience metric, a choice was made to compute and 

compare them,  to provide recommendations on whether such metrics can lead to the same 

conclusions.  

 

Food security 

Several case studies in Ethiopia have already highlighted the positive impacts of enhanced access 

to irrigation water supply on household food security (Tesfaye et al., 2008; Bacha et al., 2011; 

Aseyehegu et al., 2012). Besides an extended growing season, with a higher variety in food and 

cash crop production and the resulting increase in cash income, food insecurity could be reduced. 

Hence, dietary diversity and food security outcomes are also among the key expected impacts of 
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the PASIDP project. This impact assessment will examine to what extent there is a seasonal 

variation in food security outcomes over the course the different seasons.  

To measure dietary diversity, the household dietary diversity score was used. The latter (HDDS) is 

a simple count of food groups that a household or an individual has consumed over the preceding 

24 hours. To measure food insecurity, the Coping Strategies Index (CSI) was also calculated. The 

CSI takes an experiential approach to measure food security based on the behavioural coping 

strategies undertaken by households to manage food shortages. The CSI was constructed as a 

weighted average of the frequency and severity of various behavioural coping strategies (Carletto, 

Zezza, and Banerjee 2013). 

 

Market access indicators  

A proxy for market access was also computed based on  household’s proximity to the market. 

Specifically, the travelling time to markets and information on market participation of the 

households, simply defined as whether or not a farmer sells its crops or livestock products for 

money, were used as market access indicators. 

 

 

3.3 Impact estimation 

Different estimators and approaches were employed contingent on the indicators of interest to 

estimate the impact of the project.  

First it is important to stress the specific data structure. It is a high frequency data collection which 

involved four rounds of data collection, which actually capture the seasonality of both shocks and 

outcomes.  

In order to first observe the evolution of treatment effects over the four rounds, cross-sectional 

regressions were estimated for the main outcomes:  agricultural productivity and production 

outcomes, economic mobility, food security and market access outcomes. Recall that a treatment 

effect is the change in an outcome caused by an individual getting the treatment instead of another.  

It is important to recall the basic quantities of interest. A potential outcome model specifies the 

potential outcomes that each individual would obtain under each treatment level, the treatment 

assignment process and the dependence of the potential outcomes on the treatment assignment 

process. When the potential outcomes do not depend on the treatment levels, after conditioning on 

covariates, regression estimators, inverse-probability-weighted estimators and matching estimators 
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are commonly used. The term potential outcome model is equivalent to the Rubin causal model and 

the counterfactual model.
1
 

Three parameters are often used to measure treatment effects: the average treatment effect (ATE), 

the average treatment effect on the treated (ATET), and the potential outcome means (POMs).  

The ATE is the average effect of the treatment in the population: 

𝐴𝑇𝐸 =  𝐸(𝑦1 −  𝑦0). 

The POM for treatment level t is the average potential outcome for that treatment level: 

𝑃𝑂𝑀𝑡  =  𝐸(𝑦𝑡). 

The ATET is the average treatment effect among those that receive the treatment: 

𝐴𝑇𝐸𝑇 =  𝐸(𝑦1 −  𝑦0|𝑇 = 1). 

The potential outcome model is crucial to the discussion: this model generates data in which 𝑦𝑖 is 

the observed outcome variable, 𝑡𝑖 is the treatment variable, 𝑥𝑖 is a vector of covariates that affect 

the outcome, and 𝑤𝑖 is a vector of covariates that affect treatment assignment. 𝑥𝑖 and 𝑤𝑖 can have 

variables in common. 

Therefore, this potential outcome model specifies the observed outcome 𝑦 as 𝑦0 when treatment is 

equal to zero, 𝑇 = 0 and 𝑦 as 𝑦1 when treatment is equal to one ( 𝑇 = 1). Analytically: 

𝑦 = (1 − 𝑇)𝑦0 + 𝑇𝑦1. 

Note that the functional forms for 𝑦0 and 𝑦1 are: 

𝑦0=𝑋′𝛽0 + 𝜖0, 

𝑦1=𝑋′𝛽1 + 𝜖1, 

where 𝛽0 and 𝛽1 are the coefficients to be estimated, and 𝜖0 and 𝜖1 are the error terms that are not 

related to 𝑥 or 𝑤.  

Therefore, the potential outcome model divides each potential outcome into a predictable 

component 𝑋𝛽𝑡 and an unobservable error term 𝜖𝑡.  

The treatment assignment process can be specified as follows:  

𝑡 = {
1, if W′γ + η > 0
0,      otherwise

, 

where 𝛾 is the vector of coefficients, and 𝜂 is an unobservable error that is not related to 𝑥 or 𝑤. 

Once again, the treatment assignment process is divided into a predictable term 𝑊𝛾 and an 

unobservable error term 𝜂.  

The potential outcome model is specified through the functional forms of the potential outcomes 

and the treatment assignment process. The linear functional form is presented in the example 

above, but other functional forms can also be used, depending on the nature of the outcome 

variable. In the remainder of this section, the set of functional forms for the potential outcomes is 

                                                      
1 See Rubin (1974); Holland (1986); Robins (1986); Heckman (1997); Heckman and Navarro-Lozano (2004); Imbens (2004); Cameron 

and Trivedi (2005); Imbens and Wooldridge (2009); and Wooldridge (2010) for more detailed discussions. 



24 

 

 

referred to as the outcome model, and the treatment assignment process is referred to as the 

treatment model.  

Three key assumptions underpin the different treatment effect estimators that we employ in this 

study,  namely: (1) the conditional independence (CI) assumption, which restricts the dependence 

between the treatment model and the potential outcomes given the covariates; (2) the overlap 

assumption, which ensures that each individual could receive any treatment level; and (3) the 

independent and identically distributed (i.i.d.) sampling assumption, which ensures that the 

potential outcomes and the treatment status of each individual are unrelated to the potential 

outcomes and treatment statuses of all other individuals in the population. This third assumption is 

what is known as SUTVA, the stable unit treatment value assumption (Imbens and Woolridge 

2009; Woolridge 2010). Note that these assumptions may vary across estimators. The SUTVA 

assumption states that the observed differences in outcomes between treatment and control units 

only depend on one’s own treatment status, and not the treatment status of the other units. 

The following five econometric methods are used to provide correct inference for causal 

parameters, for each round of the study specifically: (1) regression-adjustment (RA); (2) propensity 

score matching (PSM); (3) covariate matching (NN or NNM);
2
 (4) inverse-probability weighting 

(IPW); and (5) the doubly robust estimator (IPWRA).  

In addition, given the particular data structure, a high frequency dataset with four rounds of data, 

which is effectively panel data, an adaptation of the standard empirical growth model is used to 

estimate the impact of irrigation on resilience overtime (Dercon et al. 2012). Dercon et al. (2012) 

note that while the standard growth model (Temple 1999) does not account for transitory shocks 

(for example, changes in rainfall levels), previous studies using a panel dataset of Ethiopian 

households survey observed significant impacts of transitory shocks on household consumption 

levels (Dercon 2004, Dercon et al. 2005). According to this specification, one estimates the 

changes in outcomes from the first period, controlling for the initial conditions. This specification 

can be expressed as follows: 

∆𝑦𝑖𝑡 = 𝛽0 + 𝛽1𝐼𝑖 + 𝛽2∆𝑆𝑖𝑡 + 𝛽3𝐼𝑖∆𝑆𝑖𝑡+𝛽4𝑦𝑖,𝑡−1+𝛽5𝑦𝑖1 +𝛽6𝑋𝑖1 + 𝑇𝑡 + 𝜀𝑖𝑡 , 

where ∆𝑦𝑖𝑡 = 𝑦𝑖𝑡 − 𝑦𝑖1 is the change in outcome of interest overtime from the baseline round, 𝐼𝑖 is 

the treatment status, ∆𝑆𝑖𝑡 = 𝑆𝑖𝑡 − 𝑆𝑖1 is the change in the prevalence of shocks over time from the 

first round, 𝑦𝑖,𝑡−1 is the outcome of interest from the previous time period (first-ordered lag), 𝑋𝑖1 is 

the household characteristics at the baseline round (initial conditions), 𝑇𝑡  is the time dummy 

variable, and 𝜀𝑖𝑡  is the error term. The growth model is fitted through the Arellano-Bond (1991) 

and Arellano-Bover (1995)/Blundell-Bond (1998) Dynamic Panel data estimators. Two 

specifications are explored – a first one that doesn’t include interactions and more saturated one. 

The covariates used in the model are age, gender, education level and marital status of the 

                                                      
2 Both (2) and (3) are matching estimators. 
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household head, number of adult members, dependency ratio and the size of land owned by the 

household.  

The Arellano-Bond (1991) and Arellano-Bover (1995)/Blundell-Bond (1998) estimators, also 

known as difference and system GMM (generalized method of moments), have gained increased 

recognition in the econometric literature (Bond, 2002, Roodman, 2005) recently. Both are designed 

for cases in which 𝑇 (time) is at least equal to 3 and the number of observations is large (small 𝑇 

and large 𝑁). They are particularly recommended when there is a dynamic panel bias, when there 

are no good excluded instruments at hand, when other regressors are potentially endogenous in the 

model of interest and when there is the presence of heteroscedasticity and auto-correlation within 

households and not across them.  

The difference GMM estimator was first proposed by Holtz-Eakin, Newey and Rosen (1988). The 

idea behind is to first-difference the data and then apply the generalized method of moments. 

Instead of using exogenous instruments, lagged levels of any endogenous repressors are added. 

This makes the endogenous variables predetermined and, therefore, not correlated with the error 

term in the equation.  

The system GMM estimator was first suggested by Arellano and Bover in 1995 and further 

developed by Blundell and Bond in 1998. The estimator exploits further moment conditions and 

essentially fits a system of equations for each period, one in differences and one in levels, allowing 

for the instruments to change. The introduction of more instruments, improves efficiency.  The 

equation in differences is instrumented with levels and the level equation is instrumented with the 

differences. It makes the additional assumption that the first differences of the instruments are 

uncorrelated with the fixed effects. System GMM is estimated in levels to be able to retain time 

invariant variables such as the treatment variable. 

To ensure that the households in the treatment and the control groups are statistically comparable, 

matching estimators are employed first to obtain comparable groups and control for any selection 

on observable characteristics using the observations using data from the first round. This matched 

sample is used to set the sample for all analyses. 
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1. Profile of the project area and sample 

Table 4.1 presents descriptive statistics of the survey sample, where average characteristics of 

treatment and control groups are presented. Note that average characteristics are quite balanced 

across the two groups – indicating that there are no systematic differences and therefore that the 

control represents a valid counterfactual. Minor differences are observed for variables such as 

education of household head (with the control slightly more educated then the treatment group); 

and for recalled assets such as number of livestock (e.g. oxen and donkeys) – where the treatment 

group seems to have a higher average number of animals 12 months ago.  

 

Table 4.1: Summary statistics before, after matching and bias reduction 

 

  

Before matching After matching  
Reductio

n 

in Bias 

(%) 

Treat. 

Mean/SE 

Control 

Mean/SE p-value Bias 

Treat. 

Mean/SE 

Control 

Mean/SE 

p-

value Bias 

Male head 
0.92 0.89 0.138 9.26 0.93 0.927 0.94 0.55 94.02 

0.01 0.02   0.01 0.014    

Age of head 
44.28 45.26 0.280 3.40 44.20 44.256 0.95 0.45 86.89 

0.60 0.70   0.60 0.662    

Education of head (1= 

Elementary )  

 

0.44 0.51 0.072* 12.41 0.44 0.433 0.78 2.25 81.83 

0.02 0.03   0.02 0.027    

Education of head 

(1=Secondary)  
0.07 0.04 0.043** 10.74 0.06 0.057 0.90 1.22 88.66 

0.01 0.01   0.01 0.013   . 

Number of adult HH 

members 

 

6.01 5.67 0.053* 8.88 5.98 6.040 0.77 2.49 71.95 

 
0.12 0.13   0.12 0.139    

Dependency ratio 

 
1.35 1.33 0.738 3.88 1.35 1.305 0.57 4.52 -16.43 

 0.05 0.05   0.05 0.054    

Marital status of head 

(1=married) 
0.92 0.89 0.141 8.16 0.93 0.926 0.91 0.86 89.52 

 0.01 0.02   0.01 0.015    

Altitude 

1859 1830 0.452 5.03 1857 1875 0.66 3.39 32.63 

 23.88 30.68   24.42 28.836    

Total land owned 2.09 1.93 0.337 5.13 2.08 2.082 0.99 0.11 97.95 

 0.12 0.12   0.12 0.123    

Improved wall 0.05 0.07 0.261 6.21 0.05 0.058 0.65 3.58 42.44 

 0.01 0.01   0.01 0.013    

Improved floor 0.05 0.05 0.925 0.67 0.05 0.046 0.96 0.39 42.44 

 0.01 0.01   0.01 0.012    

Modern kitchen 0.87 0.88 0.536 1.21 0.87 0.866 0.85 1.54 -27.41 

 0.02 0.02   0.02 0.019    

Number of rooms 2.22 2.16 0.374 2.86 2.22 2.259 0.60 4.43 -55.23 

 0.04 0.05   0.04 0.054    

Toilet 0.82 0.85 0.305 5.37 0.82 0.804 0.59 4.74 11.70 

 0.02 0.02   0.02 0.022    
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Table 4.2 displays the sample distribution by region, after performing propensity score matching. 

The sample reduced from 770
3
 to 731 after matching on a number of covariates, notably the ones 

presented in Table 4.1.  

 

Table 4.2: Sample distribution by region after matching 

Region 

Treatment Control 

Total 

HHs Kebeles HHs Kebeles 

Amhara 119 10 67 10 186 

Oromia 99 10 71 10 170 

SNNPR 73 9 91 10 164 

Tigray 112 10 99 10 211 

Total 403 39 328 40 731 

 

Table 4.3 presents the distribution of the irrigation schemes financed by the project in the sampled 

kebeles across the four regions. The distribution is quite heterogeneous – with modern diversion 

prevalent across all regions and particularly in Amhara. 

 

Table 4.3: Distribution of irrigation schemes among the treatment sample by region 

Type of irrigation 

Region 

Total 

Amhara Oromia SNNPR Tigray 

Modern river diversion 109 41 38 43 231 

Traditional river diversion 2 6 5 3 16 

                                                      
3 Note that around 25% of the initial 1,033 households were lost due to attrition and treatment contamination. 

Improved oven 0.06 0.06 0.712 5.09 0.05 0.050 0.91 0.82 83.92 

 0.01 0.01   0.01 0.012    

Improved waste 0.11 0.08 0.232 6.95 0.11 0.111 0.96 0.45 93.55 

 0.02 0.01   0.02 0.017    

Number of oxen  (12 

months ago) 
1.25 0.96 0.003*** 13.56 1.16 1.211 0.70 3.83 71.74 

 0.07 0.07   0.06 0.079    

Number of donkeys  

(12 months ago) 
0.50 0.33 0.002*** 14.60 0.45 0.463 0.79 2.46 83.14 

 0.04 0.03   0.04 0.038    

Radio 0.39 0.31 0.058* 9.89 0.37 0.377 0.92 0.90 90.93 

 0.03 0.03   0.03 0.030    

Incidence of all shocks 

experienced in the past 

five years 

1.85 1.80 0.637 1.10 1.85 1.875 0.87 1.32 -20.03 

 0.08 0.09   0.08 0.092    

Drought index  

(SPEI<=-1) 
0.84 0.80 0.215 2.53 0.84 0.847 0.76 2.36 7.00 

 0.02 0.02   0.02 0.020    

No. of observations 
422 348   403 328    
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Spring 0 12 0 0 12 

Spate 0 11 0 8 19 

Pump-supported 0 2 1 36 39 

Shallow-dug wells 0 0 0 11 11 

Total 111 72 44 101 328 

 

Table  4.4 shows descriptive statistics concerning the treatment sample, particularly reported costs 

concerning water users associations (WUA) membership (notably prevalence of WUA 

membership, reported WUA membership fees; WUA and irrigation costs in the last 12 months 

preceding the baseline round, by region. The proportion of households who participate in WUAs is 

larger in Amhara region, possibly a consequence of the larger number of schemes. Surprisingly 

reported fees are larger in Tigray, as well as costs related to the WUA and irrigation. However, the 

higher WUA membership fee and cost observed in Tigray can be explained by the evolution of 

WUAs in the four regions that was largely influenced by traditional irrigation practices, the 

political context of the villages and the interests of external actors (Yami, 2013). While with the 

introduction of ‘modern schemes’ of PASIDP,  the set-up and by-laws of WUAs in Amhara, 

Oromo and SNNPR regions got replaced by the new institutional arrangements introduced by 

PASIDP and the cooperative agency, in Tigray region the traditional water distribution system and 

the WUA leadership persisted. The traditional WUA committees in the Tigray region continued to 

function at the lowest level of formal institutions to govern the irrigation schemes and administer 

WUA membership fees successfully, while the top-down approach followed by the cooperative 

agency in devising the formal by-laws of WUAs in the three regions reduced the common 

understanding of by-laws by users of schemes and weakened rule enforcement(Yami, 2013). The 

higher average cost of irrigation in Tigray mainly due to the presences of pump-supported 

irrigations schemes that usually have a significant electric costs. 

Also, share of irrigated land is roughly similar – although irrigated land size seems to be higher in 

Amhara compared to the rest of the regions.  

 

Table 4.4: Descriptive statistics of the cost of irrigation and WUA membership for the 

treatment sample by region at the baseline 

 

Region 

Total 

Amhara Oromia SNNPR Tigray 

WUA membership (%) 89.92 31.31 50.68 69.64 62.78 

WUA membership fee (Birr) 33.12 28.70 34.46 87.35 49.49 

WUA cost (Birr) 22.73 3.94 5.27 37.32 18.66 

Irrigation cost (Birr) 65.74 31.51 20.17 217.84 91.46 
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Irrigated land (ha.) 0.92 0.31 0.16 0.33 0.44 

Share of irrigated land (%) 0.33 0.33 0.13 0.22 0.25 

 

Table 4.5 presents the percentage distribution of households by the type of major crops grown in 

each region, at the baseline round. Note that while maize is prevalent in Amhara and Oromia, teff is 

prevalent across all except Oromia, followed by sorghum which is grown, primarily in Oromia, and 

Tigray. Wheat is predominant instead in Tigray.  

 

Table 4.5: Sample distribution by major types of crops grown by region at the baseline 

 

Region 

Total 

Amhara Oromia SNNPR Tigray 

Major crops (%)      

Maize  65.05 67.06 46.34 13.27 46.37 

Teff 43.55 0.00 43.29 51.18 35.57 

Sorghum 1.61 54.12 4.27 35.07 24.08 

Wheat 13.44 4.71 12.20 45.50 20.38 

Barley 29.03 0.59 10.98 31.28 19.02 

 

Table 4.6 shows descriptive results on the various crop production indicators, for the matched 

samples, across the four rounds. Note that these statistics refer to the season preceding the data 

collection. Recall that Meher is the main rainy season, while Belg represents the short rainy season. 

Result on input expenditure for the first Meher season is not presented as expenditure data was not 

collected during the first round of data collection. Note that grain yield largely varies across 

seasons, while vegetables yields are larger in first Meher and Dry season.  Crop diversification 

measured by the Simpson index seems to be larger in the first Meher season.  

 

Table 4.6: Descriptive statistics of crop production for the matched sample across seasons 

 

Seasons 

Total 

Meher 1 Dry Belg Meher2 

Crop production input use      

Cultivated land (ha.) 1.16 0.35 0.53 1.40 0.86 

Share of irrigated land 0.25 0.25 0.22 0.23 0.24 

Expenditure per ha. 

(Birr) 
- 1907.7 677.9 1481.2 1016.7 

Seed - 754.7 168.3 416.5 446.5 

Fertilizer - 701.8 324.2 814.9 613.6 
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Pesticides - 109.6 68.9 37.3 71.9 

Labour - 341.6 116.5 212.5 223.5 

Crop yield (ha.)      

Grain 1531.5 1206.4 7055.3 1079.73 1806.3 

Cereal 1593.3 1384.2 2988.4 1068.8 1478.2 

Pulse 859.4 488.9 925.1 281.2 598.1 

Fruit 1399.5 536.1 6924.8 2434.5 3225.7 

Spice - 1194.5 4830.3 1411.4 2106.5 

Vegetable 6743.45 5079.9 1682.5 1245.7 3874.9 

Root 4368.7 7085.9 35994.3 1613.3 12059.1 

Perennial 2773.8 2501.7 12024.3 926.9 4371.4 

Crop revenue 3250.7 2013.9 960.4 1269.6 1873.6 

Total value of crop production  - 27,8 36,549 42,017 26,611 

Crop diversification (Simpson's 

index) 0.412 0.181 0.224 0.272 0.272 

 

Table 4.7 presents descriptive statistics on income indicators across the four rounds. Note that total 

gross income is larger in the Meher seasons, while the distribution of income sources exhibit 

similar patterns across the first and fourth round, and between the 2
nd

 and 3
rd

 round. Income 

diversification  is descriptively marginally larger during the rounds corresponding to the dry and 

short rainy season.  This implies that households participate in other income-generating activities in 

the lean seasons.   

 

Table 4.7: Descriptive statistics of household income of the matched sample across seasons  

 

Seasons 

Total 

Meher 1 Dry Belg Meher2 

Total gross income 6617.7 4319.4 3673.5 6815.7 5356.6 

Per capita gross income 1238.7 811.7 675.4 1239.64 991.4 

Income sources (%  of total)      

Crop 43 28 26 39 34 

Livestock 30 29 29 26 28 

Agricultural wage  2 3 3 2 2 

Non-agricultural wage  3 5 3 3 4 

Self-employment 8 11 13 10 11 

Transfer 2 2 2 2 2 

Other  1 2 4 3 2 
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Income diversification 0.29 0.34 0.32 0.28 0.31 

 

Table 4.8 reports food security indicators, as well as expenditure based indicators, across the four 

rounds. Per capita expenditures are recalled during the last four months preceding each round. Note 

how food security indicators are not consistent. While HDDS seems to increase in the Dry and Belg 

seasons, and decreases in the Meher seasons,  the coping strategy index, which can be interpreted, 

as the more coping strategies a household employs, the worse off it is, seems to be remarkably low 

in the first Meher, the baseline round, to then deteriorate across the following rounds. These trends 

are explored in the subsequent multivariate analyses across treatment and control groups.  

 

Table 4.8: Descriptive statistics of nutrition status of the matched sample across seasons  

 

Seasons 

Total 

Meher 1 Dry Belg Meher2 

HDDS 4.63 5.72 6.21 5.85 5.60 

CSI  0.52 3.51 3.69 3.59 2.83 

Per capita household food expenditure 17.29 38.72 47.32 37.24 35.14 

Per capita household non-food expenditure 30.47 46.11 40.10 45.81 40.63 

Per capita total household expenditure 47.77 84.83 87.41 83.05 75.77 

 

Turning to the resilience metrics proxied by the various indices, cross-sectional descriptive 

statistics are presented indicating the  percentage of households being resilient using the median 

threshold of the index in question (contingent of each index distribution). Trends are quite different 

across the various metrics. Intuitively households seem to be less resilient in the dry season,  except 

under RIMA II where the negative spike is during the third round.  

 

Table 4.9: Descriptive statistics of the resilience status of the matched household sample across 

seasons (various resilience indicators). 

 

Seasons 

Total 

Meher 1 Dry Belg Meher2 

Resilience indicators (%)      

RIMA I 47 48 61 49 51 

RIMA II 47 24 08 16 23 

PRIME 58 29 31 22 35 

Development resilience (expenditure) - 43 46 49 46 

Development resilience (HDDS) - 44 38 52 45 
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Development resilience (Assets) 65 47 62 52 57 

 

Table 4.10 presents asset based indicators across the 4 rounds. Note an increase of average levels 

across seasons, as far as durable, productive and livestock assets are concerned, which is then 

reflected in the overall asset index distribution.  

 

Table 4.10: Descriptive statistics of household assets of the matched sample across seasons  

 

Seasons 

Total 

Meher 1 Dry Belg Meher2 

Overall assets 1.42 1.70 1.75 1.90 1.69 

Durable assets 1.58 1.90 2.23 2.72 2.11 

Productive assets 1.89 2.09 2.05 2.11 2.03 

Livestock 1.20 1.62 1.53 1.57 1.48 

Large livestock 1.19 1.44 1.38 1.47 1.37 

Small livestock  0.57 1.15 1.06 0.98 0.940 

TLU 7.33 4.18 4.12 4.25 4.97 

 

As far as asset based poverty metrics, the number of households classified as poor are reported 

according to two relative poverty lines, the 40
th
 and 60

th
 percentile of assets distribution at baseline 

(Table 4.11 – poverty incidence indicator).  The percentage of households classified as moving in, 

out, and in poverty persistence (either remaining below or above the specific poverty line) are also 

presented.  

 

Table 4.11: Descriptive statistics of economic mobility based on different asset-based poverty 

lines for the matched sample (percentage) 

 

Seasons 

Meher 1 Dry Belg Meher2 

Overall asset-based poverty line, 40th percentile (%)     

Poverty incidence 30 22 24 19 

Moving into poverty 2 9 11 7 

Moving out of poverty 28 46 28 43 

Remain below poverty line 72 54 72 57 

Remain above poverty line 98 91 89 93 

Overall asset-based poverty line, 60th percentile (%)     

Poverty incidence 50 37 40 31 
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Moving into poverty 4 13 17 9 

Moving out of poverty 13 39 21 35 

Remain below poverty line 87 61 79 65 

Remain above poverty line 96 87 83 91 

Productive asset-based poverty line, 40th percentile (%)     

Poverty incidence 30 25 28 21 

Moving into poverty 1 11 16 11 

Moving out of poverty 27 43 36 51 

Remain below poverty line 73 57 64 49 

Remain above poverty line 99 89 84 89 

Productive asset-based poverty line, 60th percentile (%)     

Poverty incidence 49 40 46 42 

Moving into poverty 2 19 25 17 

Moving out of poverty 22 37 23 29 

Remain below poverty line 78 63 77 71 

Remain above poverty line 98 81 75 83 

 

Last, indicators for market access are presented in Table 4.12. Livestock and crops sales seem to be 

more prevalent in the first season compared to the last round – except for livestock products. The 

average time to market in minutes across seasons  exhibits similar values except for the short rainy 

season.  

 

Table 4.12: Descriptive statistics of market participation of the matched sample across seasons  

 

Seasons 

Total 

Meher 1 Dry Belg Meher2 

Market participation (%)      

Livestock 40 25 24 29 30 

Livestock product 33 32 29 33 32 

Crop 40 27 18 22 27 

Time to market (minutes) 98 91 68 91 87 
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5. Results 

In this section results are presented from the cross-sectional treatment effects estimators, notably 

IPWRA, IPW, NN, PSM and RA, across the various outcomes presented in the previous section. 

Results are reported across the seasons covered in each round of data collection, from Meher (rainy 

season) in the first round, to Dry in the second round, Belg (short rainy season) in the third round, 

and again, Meher in the fourth round. Note that IPWRA, the doubly robust estimator, is considered 

the one that is more robust and reliable from an econometric standpoint, hence it can be considered 

the preferred estimator for results reporting.  

5.1 Agricultural production, intensification and input indicators 

In this section, indicators such as crop area and expenditure on various inputs (notably seeds, 

fertilizers, pesticides and labor) are presented. For crop area observations are only available for two 

rainy seasons (Meher). For inputs expenditures, only three valid data points are available. The first 

data point corresponds to the one that is first in time (October 2016).  

Results are quite consistent across the various estimators. Relative to the crop area under analysis, 

it is important to stress that irrigation has, intuitively, a stronger impact in the Dry season.  

Expenditure on inputs seems to be consistently higher in the Dry season compared to the other 

seasons. Particularly for seeds expenditures, the highest impact is in the dry season where there is a 

coefficient of 1.76 (see column that refers to the IPWRA estimator). This corresponds to a 176% 

increase in seed expenditure with irrigation relative to farmers in the comparison group. 

Expenditure on fertilizers and labour exhibit a similar trend. This shows the extent of beneficiary 

farmers’ labour participation in the dry season for crop production.  

 

Table 5.1: Results on agricultural production indicators: crop input use  

 
(1) (2) (3) (4) (5) (6) 

IPWRA IPW NN PSM RA Control mean 

Crop inputs use by season       

Crop area 

Meher 1 
0.133 0.0849 0.173* 0.128 0.182** 1.062 

(0.0823) (0.0814) (0.0955) (0.0830) (0.0824)  

Dry 
0.175*** 0.206*** 0.200*** 0.219*** 0.177*** 0.237 

(0.0451) (0.0434) (0.0463) (0.0417) (0.0439)  

Belg 
0.0156 0.0127 0.0285 0.0307 -0.00869 0.536 

(0.0516) (0.0514) (0.0677) (0.0489) (0.0553)  

Meher 2 
0.119 0.0914 0.0926 0.0554 0.138 1.285 

(0.0900) (0.0984) (0.152) (0.109) (0.0982)  

Seed Dry 1.758*** 1.900*** 1.874*** 1.840*** 1.772*** 67.52 
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expenditure 

(Birr, log) 
(0.208) (0.194) (0.206) (0.197) (0.201)  

Belg 
0.359** 0.354** 0.218 0.249 0.249 97.69 

(0.178) (0.179) (0.229) (0.182) (0.185)  

Meher 2 
0.555** 0.472** 0.392 0.528** 0.511** 268.4 

(0.222) (0.228) (0.283) (0.240) (0.220)  

Fertilizer 

expenditure 

(Birr, log) 

Dry 
1.960*** 2.005*** 2.074*** 2.094*** 2.026*** 55.03 

(0.207) (0.200) (0.210) (0.193) (0.195)  

Belg 
0.572*** 0.596*** 0.540** 0.497*** 0.481** 142.2 

(0.190) (0.189) (0.253) (0.188) (0.194)  

Meher 2 
0.398* 0.317 0.749** 0.422* 0.583** 854.5 

(0.233) (0.235) (0.322) (0.241) (0.251)  

Pesticide 

expenditure 

(Birr, log) 

Dry 
0.316*** 0.349*** 0.422*** 0.371*** 0.353*** 11.82 

(0.120) (0.107) (0.118) (0.102) (0.104)  

Belg 
0.243*** 0.244*** 0.239** 0.241*** 0.233*** 2.418 

(0.0810) (0.0813) (0.0979) (0.0823) (0.0818)  

Meher 2 
0.207 0.172 0.101 0.145 0.249 37.20 

(0.153) (0.156) (0.192) (0.170) (0.153)  

Labor 

expenditure 

(Birr, log) 

Dry 
0.881*** 0.888*** 1.022*** 0.983*** 0.931*** 26.92 

(0.165) (0.158) (0.165) (0.143) (0.152)  

Belg 
0.123 0.119 0.0709 0.162 0.127 40.87 

(0.123) (0.124) (0.147) (0.118) (0.125)  

Meher 2 
-0.0991 -0.177 0.0183 -0.0249 -0.0326 246.0 

(0.209) (0.215) (0.246) (0.212) (0.206)  

No. of observations 731 731 731 731 731 328 

Notes: 
1. Results are based four rounds of high frequency data. 

2. Results only on crop expenditure are not reported for meher 1 as expenditure data was not collected in the first round. 

3. *, **, & *** represent statistical significance at the 10%, 5%, & 1% level respectively. 

 

In terms of crop yield gains, results are also very stable across estimators. Looking at the estimator 

of reference, IPWRA, impacts are larger in the Dry season for all seasonal crops under 

examinations, and notably grains, cereal, vegetables, root and fruit crops. Perennials also exhibit a 

significant impact across the first Meyer season, followed by the Dry season.  

 

Table 5.2: Results on agricultural production indicators: crop yield  

 

(1) (2) (3) (4) (5) (6) 

IPWRA IPW NN PSM RA 
Control 

mean 

Crop yield by season       

Grain crop 

yield (kg/ha, 

log) 

Meher 1 
0.332 0.284 0.312 0.569** 0.600** 707.0 

(0.243) (0.238) (0.350) (0.276) (0.270)  

Dry 
0.514*** 0.565*** 0.578*** 0.642*** 0.515*** 41.24 

(0.154) (0.152) (0.165) (0.139) (0.154)  

Belg 
0.474*** 0.490*** 0.234 0.372** 0.396** 172.1 

(0.167) (0.165) (0.216) (0.180) (0.177)  
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Meher 2 
-0.110 -0.252 -0.183 -0.0688 0.0793 574.8 

(0.237) (0.241) (0.319) (0.258) (0.251)  

Cereal crop 

yield (kg/ha, 

log) 

Meher 1 
0.340 0.321 0.269 0.643** 0.611** 717.2 

(0.245) (0.240) (0.353) (0.278) (0.272)  

Dry 
0.522*** 0.584*** 0.497*** 0.577*** 0.504*** 29.70 

(0.136) (0.129) (0.157) (0.129) (0.140)  

Belg 
0.414*** 0.425*** 0.138 0.313* 0.347** 146.1 

(0.159) (0.157) (0.209) (0.170) (0.168)  

Meher 2 
-0.0923 -0.240 -0.134 -0.0863 0.111 555.2 

(0.237) (0.240) (0.318) (0.257) (0.252)  

Vegetable 

crop yield 

(kg/ha, log) 

Meher 1 
0.519*** 0.506*** 0.470*** 0.465*** 0.504*** 57.37 

(0.130) (0.125) (0.144) (0.142) (0.130)  

Dry 
0.811*** 0.811*** 0.936*** 0.847*** 0.855*** 48.18 

(0.157) (0.149) (0.137) (0.141) (0.140)  

Belg 
0.187* 0.177* 0.198* 0.115 0.166 39.34 

(0.106) (0.107) (0.117) (0.134) (0.108)  

Meher 2 
0.0491 0.0208 0.0190 0.0315 0.0259 38.27 

(0.105) (0.111) (0.128) (0.122) (0.107)  

Root crop 

yield (kg/ha, 

log) 

Meher 1 
0.471*** 0.381** 0.439** 0.338* 0.472*** 146.0 

(0.147) (0.156) (0.178) (0.182) (0.145)  

Dry 
0.686*** 0.720*** 0.705*** 0.698*** 0.619*** 413.9 

(0.182) (0.175) (0.210) (0.189) (0.192)  

Belg 
-0.0642 -0.0916 -0.152 -0.0273 -0.0846 2153.0 

(0.174) (0.184) (0.260) (0.177) (0.181)  

Meher 2 
-0.200 -0.0905 -0.175 0.0720 -0.248 155.6 

(0.151) (0.128) (0.217) (0.116) (0.158)  

Pulses crop 

yield (kg/ha, 

log) 

Meher 1 
0.0879 -0.0101 0.186 -0.103 0.174 49.83 

(0.139) (0.140) (0.156) (0.170) (0.123)  

Belg 
0.0505 0.0584 0.0608 0.0323 0.0313 6.504 

(0.0628) (0.0601) (0.0674) (0.0733) (0.0684)  

Meher 2 
-0.0644 -0.0854 -0.187 -0.0413 -0.0784 18.44 

(0.104) (0.108) (0.146) (0.114) (0.104)  

Fruit crop 

yield (kg/ha, 

log) 

Meher 1 
0.200*** 0.198*** 0.201*** 0.183*** 0.195*** 0.762 

(0.0626) (0.0628) (0.0631) (0.0647) (0.0636)  

Belg 
0.369*** 0.366*** 0.250* 0.437*** 0.368*** 28.50 

(0.113) (0.114) (0.133) (0.101) (0.111)  

Meher 2 
0.117 0.0850 0.0260 0.170* 0.0812 49.19 

(0.109) (0.115) (0.167) (0.0953) (0.112)  

Spices crop 

yield (kg/ha, 

log) 

Meher 1 
0.0109 0.0109 0.0109 0.0109 0.0109 7.927 

(0.0109) (0.0109) (0.0109) (0.0107) (0.0109)  

Belg 
0.0868 0.0942 0.163* 0.0961 0.0784 43.48 

(0.0889) (0.0853) (0.0988) (0.0941) (0.0899)  

Meher 2 
0.00563 -0.00172 0.0905 -0.0547 -0.0125 65.31 

(0.116) (0.120) (0.157) (0.142) (0.120)  

Perennial Meher 1 0.380** 0.470*** 0.467** 0.479*** 0.325* 236.0 
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crop yield 

(kg/ha, log) 
(0.175) (0.166) (0.235) (0.163) (0.190)  

Dry 
0.338** 0.360** 0.189 0.333* 0.251 278.1 

(0.167) (0.160) (0.217) (0.172) (0.184)  

Belg 
0.251 0.222 0.254 0.311* 0.220 376.2 

(0.166) (0.170) (0.211) (0.162) (0.166)  

Meher 2 
0.200 0.278** -0.00758 0.279** 0.186 48.90 

(0.156) (0.141) (0.235) (0.140) (0.160)  

No. of observations 731 731 731 731 731 328 

Notes: 

1. Results are based four rounds of high frequency data. 

2. Results for pulse, fruits, and spices for the dry season are not presented as they are not produced by most of the sample in the dry 

season. 

3. *, **, & *** represent statistical significance at the 10%, 5%, & 1% level respectively. 

 

Turning to indicators related to the value of crop production, strongly significant results are once 

again present which show that impacts of modern irrigation are larger for value of grain and cereal 

crops produce (in Birr and logarithmic form) in the Belg season (the short rains season), but also 

significant and high in second Meyer  (large rainy season, preceding the 4
th
 round) respectively.  As 

far as value of vegetable crop produce, a higher impact was expected among the treated – in the dry 

season, and the findings corroborate this hypothesis.  

 

Table 5.3: Results on agricultural production indicators: value of crop production  

 

(1) (2) (3) (4) (5) (6) 

IPWRA IPW NN PSM RA 
Control 

mean 

Value of crop production by 

season 
      

Value of grain 

crop produce 

(Birr, log) 

Meher 1 
0.143 0.0333 0.335 0.569** 0.600** 1103.3 

(0.253) (0.245) (0.330) (0.276) (0.270)  

Dry 
0.572*** 0.634*** 0.597*** 0.667*** 0.553*** 96.25 

(0.159) (0.154) (0.173) (0.147) (0.164)  

Belg 
1.340*** 1.363*** 1.164*** 1.087*** 1.201*** 2715.1 

(0.281) (0.281) (0.354) (0.326) (0.290)  

Meher 2 
1.453*** 1.244*** 1.321*** 1.349*** 1.620*** 9141.0 

(0.309) (0.313) (0.434) (0.313) (0.321)  

Value of cereal 

crop produce 

(Birr, log) 

 

Meher 1 
0.155 0.0956 0.254 0.643** 0.611** 949.2 

(0.240) (0.233) (0.324) (0.278) (0.272)  

Dry 
0.550*** 0.574*** 0.522*** 0.579*** 0.523*** 57.06 

(0.136) (0.135) (0.154) (0.134) (0.142)  

Belg 
1.303*** 1.320*** 1.117*** 1.069*** 1.170*** 2502.1 

(0.276) (0.276) (0.344) (0.319) (0.285)  

Meher 2 
1.253*** 1.039*** 1.181*** 1.148*** 1.449*** 8445.4 

(0.313) (0.316) (0.437) (0.315) (0.327)  

Value of 

vegetable crop 
Meher 1 

0.497*** 0.476*** 0.477*** 0.465*** 0.504*** 78.2 

(0.121) (0.119) (0.137) (0.142) (0.130)  
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produce (Birr, 

log) Dry 
0.814*** 0.832*** 0.932*** 0.854*** 0.864*** 88.81 

(0.161) (0.152) (0.139) (0.145) (0.141)  

Belg 
0.242 0.226 0.253 0.166 0.236 357.1 

(0.163) (0.166) (0.181) (0.197) (0.157)  

Meher 2 
0.658*** 0.661*** 0.258 0.645*** 0.612*** 525.3 

(0.194) (0.192) (0.280) (0.205) (0.200)  

Value of root 

crop produce 

(Birr, log) 

Meher 1 
0.288*** 0.263** 0.313*** 0.338* 0.472*** 33.2 

(0.108) (0.110) (0.112) (0.182) (0.145)  

Dry 
0.651*** 0.698*** 0.698*** 0.676*** 0.603*** 208.6 

(0.183) (0.175) (0.201) (0.190) (0.188)  

Belg 
0.0930 0.0526 0.0308 0.167 0.0268 1523.4 

(0.224) (0.235) (0.289) (0.226) (0.230)  

Meher 2 
0.442* 0.582*** 0.236 0.828*** 0.312 926.1 

(0.238) (0.220) (0.332) (0.210) (0.249)  

Value of pulse 

crop produce 

(Birr, log) 

Meher 1 
0.0443 -0.0390 0.147 -0.103 0.174 102.6 

(0.139) (0.138) (0.127) (0.170) (0.123)  

Belg 
0.193* 0.207* 0.217 0.149 0.151 135.3 

(0.113) (0.109) (0.136) (0.132) (0.123)  

Meher 2 
0.418** 0.391** 0.0929 0.372* 0.395** 452.2 

(0.191) (0.195) (0.262) (0.210) (0.194)  

Value of fruits 

crop produce 

(Birr, log) 

Meher 1 
0.172*** 0.167*** 0.180*** 0.183*** 0.195*** 1.5 

(0.0547) (0.0558) (0.0543) (0.0647) (0.0636)  

Belg 
1.040*** 1.033*** 0.880*** 1.231*** 0.979*** 1105.8 

(0.221) (0.222) (0.297) (0.207) (0.226)  

Meher 2 
1.474*** 1.422*** 1.333*** 1.624*** 1.386*** 659.3 

(0.225) (0.226) (0.292) (0.203) (0.234)  

Value of spices 

crop produce 

(Birr, log) 

Meher 1 
0.0130 0.0130 0.0130 0.0109 0.0109 0 

(0.0130) (0.0130) (0.0130) (0.0107) (0.0109)  

Belg 
0.0532 0.0529 0.112 -0.0470 0.0292 763.8 

(0.178) (0.177) (0.242) (0.206) (0.186)  

Meher 2 
0.945*** 0.943*** 1.166*** 0.925*** 0.942*** 1597.6 

(0.213) (0.216) (0.268) (0.217) (0.224)  

Value of 

perennial crop 

produce (Birr, 

log) 

Meher 1 
0.240 0.451** 0.459* 0.479*** 0.325* 499.8 

(0.219) (0.194) (0.270) (0.163) (0.190)  

Dry 
0.517** 0.522** 0.261 0.490** 0.445* 1003.5 

(0.232) (0.227) (0.305) (0.234) (0.245)  

Belg 
1.719*** 1.640*** 1.993*** 1.513*** 1.690*** 5300.1 

(0.313) (0.319) (0.410) (0.350) (0.327)  

Meher 2 
2.048*** 2.036*** 2.116*** 2.064*** 1.982*** 2965.3 

(0.307) (0.300) (0.441) (0.301) (0.335)  

Crop 

diversification 

(Simpson's 

Index) 

Meher 1 
0.0799*** 0.0794*** 0.0943*** 0.0757*** 0.0891*** 0.358 

(0.0205) (0.0196) (0.0251) (0.0221) (0.0207)  

Dry 
0.132*** 0.145*** 0.113*** 0.154*** 0.123*** 0.103 

(0.0194) (0.0181) (0.0240) (0.0179) (0.0197)  

Belg 0.0698*** 0.0696*** 0.0593** 0.0724*** 0.0565*** 0.196 
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(0.0187) (0.0186) (0.0252) (0.0206) (0.0204)  

Meher 2 
0.157*** 0.167*** 0.173*** 0.172*** 0.147*** 0.185 

(0.0203) (0.0200) (0.0283) (0.0201) (0.0220)  

No. of observations 731 731 731 731 731 328 

Notes: 

1. Results are based four rounds of high frequency data. 
2. Results only on crop sales value are reported for meher 1 as data on the total value of crop production was not available. 

3. Results for pulse, fruits, and spices for the dry season are not presented as they are not produced by most of the sample in the dry 

season.  
4. *, **, & *** represent statistical significance at the 10%, 5%, & 1% level respectively. 

 

5.2 Economic mobility indicators 

Looking at the impact of irrigation on economic mobility indicators, specifically crop, livestock 

and agricultural wage income –results are remarkably positive for crop income – with the largest 

impacts in the second rainy season. The data seem to imply a significant reduction in both self-

employment and non-agricultural wage income for treated farmers in the dry season, possibly 

corroborating the hypothesis that the treated do not diversify, focusing exclusively on the 

production of irrigated crops in the dry season.  

In addition, total household income is significantly higher for the treatment groups compared to the 

counterfactual, stressing the positive effect of irrigation systems and the sustainability of impact 

across the period under observation.  

  

Table 5.4: Results on economic mobility: income and savings indicators 

 

(1) (2) (3) (4) (5) (6) 

IPWRA IPW NN PSM RA 
Control 

mean 

Income indicators by season       

Crop income 

(Birr, log) 

Meher 1 
2.923*** 3.124*** 3.321*** 3.134*** 2.999*** 2407.7 

(0.317) (0.297) (0.412) (0.296) (0.318)  

Dry 
2.125*** 2.240*** 2.029*** 2.222*** 2.032*** 1508.4 

(0.296) (0.288) (0.360) (0.303) (0.299)  

Belg 
0.769*** 0.740** 0.411 0.711** 0.650** 2595.2 

(0.285) (0.289) (0.375) (0.288) (0.290)  

Meher 2 
3.413*** 3.743*** 3.849*** 3.880*** 3.425*** 2336.3 

(0.294) (0.288) (0.373) (0.302) (0.302)  

Livestock income 

(Birr, log) 

Meher 1 
-0.136 -0.0498 0.309 0.184 0.122 1757.3 

(0.291) (0.277) (0.391) (0.309) (0.291)  

Dry 
0.0887 0.106 0.780** -0.0976 0.430 1567.7 

(0.285) (0.281) (0.342) (0.299) (0.278)  

Belg 
-0.187 -0.171 0.246 -0.309 0.0631 1625.9 

(0.280) (0.286) (0.346) (0.314) (0.281)  

Meher 2 
-0.123 -0.198 -0.0528 -0.225 -0.0860 2074.9 

(0.297) (0.294) (0.398) (0.297) (0.288)  

Agricultural wage 

income (Birr, log) 
Meher 1 

-0.0632 -0.0533 -0.0641 -0.0415 -0.113 80.79 

(0.101) (0.0941) (0.163) (0.0894) (0.112)  
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Dry 
-0.157 -0.136 -0.401** -0.0605 -0.149 79.88 

(0.133) (0.117) (0.201) (0.114) (0.121)  

Belg 
-0.158 -0.185 -0.139 -0.274** -0.202* 141.7 

(0.114) (0.121) (0.182) (0.133) (0.119)  

Meher 2 
0.187* 0.167 0.0100 0.188* 0.141 69.70 

(0.0989) (0.102) (0.152) (0.104) (0.108)  

Non-agricultural 

wage income 

(Birr, log) 

Meher 1 
-0.0529 -0.108 -0.195 -0.0908 -0.112 233.7 

(0.113) (0.122) (0.147) (0.111) (0.126)  

Dry 
-0.391** -0.475*** -0.476** -0.426*** -0.442*** 314.7 

(0.154) (0.165) (0.233) (0.164) (0.156)  

Belg 
0.0407 0.0496 0.0118 0.132 -0.00339 145.6 

(0.134) (0.132) (0.193) (0.122) (0.140)  

Meher 2 
-0.0687 -0.101 -0.0682 -0.0402 -0.0471 163.4 

(0.134) (0.140) (0.173) (0.129) (0.127)  

Self-employment 

income (Birr, log) 

Meher 1 
-0.333 -0.415** -0.609** -0.373* -0.451** 636.0 

(0.205) (0.201) (0.275) (0.204) (0.209)  

Dry 
-0.898*** -0.598** -0.801** -0.626** -0.759*** 831.3 

(0.275) (0.247) (0.318) (0.251) (0.257)  

Belg 
-0.252 -0.276 -0.226 -0.352 -0.188 1139.0 

(0.246) (0.254) (0.311) (0.284) (0.242)  

Meher 2 
-0.696*** -0.794*** -0.682** -1.082*** -0.699*** 1167.6 

(0.237) (0.241) (0.296) (0.274) (0.231)  

Transfer income 

(Birr, log) 

Meher 1 
-0.255** -0.358*** -0.283* -0.268** -0.290** 332.6 

(0.109) (0.124) (0.168) (0.132) (0.118)  

Dry 
0.0341 0.0195 0.0981 0.0600 0.0116 90.73 

(0.107) (0.108) (0.139) (0.0934) (0.108)  

Belg 
-0.0862 -0.0929 0.0323 -0.0773 -0.0908 57.36 

(0.111) (0.115) (0.121) (0.129) (0.112)  

Meher 2 
-0.179 -0.211 -0.0592 -0.339* -0.181 138.7 

(0.127) (0.137) (0.153) (0.176) (0.121)  

Other sources of 

income (Birr, log) 

Meher 1 
-0.0541 -0.0704 -0.171 -0.0188 -0.0561 46.34 

(0.0729) (0.0802) (0.124) (0.0749) (0.0744)  

Dry 
0.0650 0.0738 0.199 0.0791 0.0645 46.83 

(0.116) (0.110) (0.130) (0.106) (0.113)  

Belg 
0.0470 0.0361 -0.135 0.0693 0.0831 84.67 

(0.140) (0.145) (0.194) (0.150) (0.133)  

Meher 2 
-0.110 -0.109 0.0697 -0.102 -0.0657 247.1 

(0.167) (0.168) (0.176) (0.170) (0.157)  

Total household 

income (Birr, log) 

Meher 1 
0.913*** 0.962*** 1.199*** 1.046*** 1.035*** 5738.1 

(0.216) (0.208) (0.305) (0.236) (0.227)  

Dry 
0.548** 0.673** 0.846** 0.617** 0.707*** 4611.3 

(0.270) (0.272) (0.343) (0.293) (0.269)  

Belg 
-0.250 -0.256 -0.0889 -0.419 -0.201 5419.7 

(0.256) (0.259) (0.317) (0.263) (0.257)  

Meher 2 
1.056*** 1.158*** 1.364*** 0.996*** 1.115*** 6419.3 

(0.236) (0.246) (0.342) (0.262) (0.229)  

Income 

diversification 
Meher 1 

-0.0501* -0.0544** -0.0866** -0.0380 -0.0604** 0.330 

(0.0257) (0.0245) (0.0363) (0.0269) (0.0256)  
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(Simpson's index) 
Dry 

-0.0248 -0.0339 -0.0614 -0.0303 -0.0364 0.366 

(0.0295) (0.0295) (0.0387) (0.0320) (0.0297)  

Belg 
0.0377 0.0340 0.0135 0.0578** 0.0379 0.304 

(0.0287) (0.0287) (0.0356) (0.0288) (0.0286)  

Meher 2 
-0.0360 -0.0454* -0.0556 -0.0173 -0.0374 0.311 

(0.0259) (0.0269) (0.0370) (0.0281) (0.0253)  

No. of observations 731 731 731 731 731 328 

Notes: 

1. Results are based four rounds of high frequency data. 

2. *, **, & *** represent statistical significance at the 10%, 5%, & 1% level respectively. 

 

Table 5.5 present impacts on wealth proxies, notably  asset indices.  The results show that average 

treatment effects on the treated, in the case of our best case estimator, IPWRA, are only positive 

and significant for productive assets, and consistently higher in the dry season, compared to the 

other rounds.  Results are less stable for the other indicators; particularly, results for durables and 

livestock  indicators, are only significant under the NN estimator, warranting further analysis. 

 

Table 5.5: Results on economic mobility: asset indices  

 

(1) (2) (3) (4) (5) (6) 

IPWRA IPW NN PSM RA 
Control 

mean 

Asset indicators by season       

Durable 

assets 

Meher 1 
-0.000130 0.0104 -0.0494 0.0996 0.118 1.523 

(0.0794) (0.0738) (0.127) (0.0781) (0.0869)  

Dry 
0.102 0.122 0.314** 0.162* 0.209** 1.790 

(0.0993) (0.0868) (0.125) (0.0894) (0.0998)  

Belg 
0.132 0.129 0.370*** 0.138 0.223* 2.102 

(0.113) (0.115) (0.143) (0.122) (0.122)  

Meher 2 
0.0656 0.0585 0.326* 0.0656 0.178 2.619 

(0.124) (0.127) (0.168) (0.120) (0.130)  

Productive 

assets 

Meher 1 
0.115 0.111 0.224** 0.187** 0.236** 1.768 

(0.0912) (0.0855) (0.100) (0.0753) (0.0962)  

Dry 
0.413*** 0.326*** 0.566*** 0.387*** 0.502*** 1.843 

(0.0763) (0.0812) (0.103) (0.0877) (0.0831)  

Belg 
0.274*** 0.289*** 0.503*** 0.360*** 0.380*** 1.811 

(0.0837) (0.0839) (0.105) (0.0838) (0.0895)  

Meher 2 
0.197*** 0.133* 0.220** 0.192*** 0.284*** 1.970 

(0.0738) (0.0756) (0.110) (0.0708) (0.0825)  

Livestock 

assets  

Meher 1 
-0.0797 -0.0517 0.176* 0.0425 0.0967 1.149 

(0.0926) (0.0744) (0.0930) (0.0515) (0.0790)  

Dry 
-0.232 -0.0849 0.211 0.0864 0.0549 1.544 

(0.235) (0.186) (0.151) (0.101) (0.150)  

Belg 
-0.0730 -0.0714 0.128 0.0241 0.0796 1.483 

(0.109) (0.112) (0.127) (0.0845) (0.0998)  

Meher 2 
-0.0281 -0.0380 0.0636 -0.0155 0.0640 1.528 

(0.0897) (0.0917) (0.131) (0.100) (0.0993)  

Large Meher 1 -0.0797 0.0263 0.228** 0.114** 0.161** 1.105 
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livestock (0.0926) (0.0645) (0.0917) (0.0527) (0.0758)  

Dry 
-0.232 0.0677 0.281*** 0.150* 0.154 1.327 

(0.235) (0.0846) (0.109) (0.0885) (0.101)  

Belg 
-0.0730 0.0165 0.157 0.0711 0.121 1.298 

(0.109) (0.0833) (0.126) (0.0844) (0.0897)  

Meher 2 
-0.0281 0.107 0.271** 0.150* 0.191** 1.357 

(0.0897) (0.0836) (0.118) (0.0846) (0.0904)  

Small 

livestock 

Meher 1 
0.0125 -0.147 0.00204 -0.119 -0.0778 0.616 

(0.0698) (0.103) (0.110) (0.0873) (0.0906)  

Dry 
0.01000 -0.373 -0.0558 -0.0945 -0.204 1.195 

(0.0967) (0.424) (0.267) (0.182) (0.280)  

Belg 
0.0149 -0.176 0.0475 -0.0478 -0.00999 1.088 

(0.0824) (0.194) (0.179) (0.120) (0.139)  

Meher 2 
0.101 -0.318** -0.409** -0.358** -0.242* 1.116 

(0.0830) (0.133) (0.174) (0.164) (0.132)  

Tropical 

livestock 

unit (TLU) 

Meher 1 
-0.182 -0.0281 1.271** 0.423 0.814* 6.876 

(0.130) (0.370) (0.547) (0.311) (0.459)  

Dry 
-0.645 0.269 0.857*** 0.475** 0.500* 3.810 

(0.543) (0.233) (0.299) (0.234) (0.277)  

Belg 
-0.175 -0.0302 0.132 0.106 0.244 3.946 

(0.188) (0.242) (0.448) (0.237) (0.268)  

Meher 2 
-0.287** 0.347 0.706** 0.455* 0.525** 3.906 

(0.130) (0.237) (0.349) (0.241) (0.261)  

Total assets 

Meher 1 
0.0182 0.0274 0.114 0.104** 0.141** 1.349 

(0.0523) (0.0469) (0.0694) (0.0442) (0.0583)  

Dry 
0.108 0.124* 0.342*** 0.203*** 0.248*** 1.557 

(0.0887) (0.0734) (0.0840) (0.0595) (0.0729)  

Belg 
0.112 0.117* 0.312*** 0.170*** 0.215*** 1.613 

(0.0684) (0.0695) (0.0818) (0.0636) (0.0713)  

Meher 2 
0.0790 0.0518 0.183* 0.0807 0.165** 1.821 

(0.0646) (0.0664) (0.0981) (0.0650) (0.0727)  

No. of observations 731 731 731 731 731 328 

Notes: 

1. Results are based four rounds of high frequency data. 
2. *, **, & *** represent statistical significance at the 10%, 5%, & 1% level respectively. 

 

5.3 Poverty reduction indicators 

Turning to poverty incidence indicators, based on asset indicators, Table 5.6 remarkably shows 

how treated farmers are consistently more likely to be above the poverty line almost across the 

board, and according to the different poverty lines in the dry season – where the benefits of 

irrigation should be felt the most. Beneficiaries farmers are also more likely to the above the 

poverty line in the season following the dry season, the Belg. These results are investigated further 

in the dynamic analysis, that are shown in Table 5.6 and 5.6a.Table 5.7 shows instead dynamic 

transitions across the various rounds, looking at movements in and out poverty.  
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Table 5.6: Results on economic mobility: poverty indicators  

 

(1) (2) (3) (4) (5) (6) 

IPWRA IPW NN PSM RA 
Contro

l mean 

Poverty indicator by season       

Above the overall asset-

based poverty line, 40th 

percentile 

Meher 1 
0.0557 0.00977 0.0270 0.0155 0.0686** 0.674 

(0.0341) (0.0273) (0.0396) (0.0359) (0.0346)  

Dry 
0.106*** 0.0646** 0.0954** 0.0682** 0.118*** 0.723 

(0.0310) (0.0264) (0.0377) (0.0326) (0.0321)  

Belg 
0.100*** 0.0532** 0.0766** 0.0552* 0.0851*** 0.701 

(0.0321) (0.0267) (0.0387) (0.0312) (0.0306)  

Meher 2 
0.0588** 0.0290 0.0605 0.0409 0.0690** 0.777 

(0.0295) (0.0251) (0.0370) (0.0312) (0.0304)  

Above the overall asset-

based poverty line, 60th 

percentile 

Meher 1 
0.0560 -0.00213 0.0520 0.00372 0.0799** 0.473 

(0.0371) (0.0307) (0.0406) (0.0369) (0.0376)  

Dry 
0.115*** 0.0610** 0.0964** 0.0639* 0.128*** 0.570 

(0.0358) (0.0305) (0.0382) (0.0370) (0.0359)  

Belg 
0.114*** 0.0569* 0.0522 0.0639* 0.0920*** 0.537 

(0.0364) (0.0315) (0.0396) (0.0373) (0.0345)  

Meher 2 
0.0959*** 0.0471 0.0666* 0.0571* 0.103*** 0.631 

(0.0347) (0.0287) (0.0380) (0.0330) (0.0331)  

Above the durable asset-

based poverty line, 40th 

percentile 

Meher 1 
0.0838** 0.0451 0.0891** 0.0409 0.0935** 0.643 

(0.0345) (0.0302) (0.0429) (0.0342) (0.0367)  

Dry 
0.0698** 0.0438 0.0603 0.0577* 0.0836** 0.732 

(0.0315) (0.0292) (0.0413) (0.0323) (0.0330)  

Belg 
0.0307 0.00147 0.0120 -0.0130 0.0279 0.768 

(0.0307) (0.0282) (0.0380) (0.0308) (0.0306)  

Meher 2 
0.0271 0.0118 0.00418 0.0136 0.0261 0.881 

(0.0229) (0.0208) (0.0306) (0.0241) (0.0239)  

Above the durable asset-

based poverty line, 60th 

percentile 

Meher 1 
0.0491 0.0164 0.108*** 0.00993 0.0663* 0.470 

(0.0371) (0.0332) (0.0415) (0.0381) (0.0384)  

Dry 
0.0836** 0.0461 0.0419 0.0837** 0.0978*** 0.564 

(0.0363) (0.0336) (0.0429) (0.0395) (0.0372)  

Belg 
0.0942*** 0.0612* 0.0568 0.0428 0.0858** 0.601 

(0.0355) (0.0327) (0.0440) (0.0380) (0.0348)  

Meher 2 
0.0233 -0.00118 0.0227 -0.00806 0.0232 0.768 

(0.0309) (0.0282) (0.0397) (0.0315) (0.0319)  

Above the productive 

asset-based poverty line, 

40th percentile 

Meher 1 
0.0502 0.0333 0.0732* 0.0316 0.0813** 0.677 

(0.0340) (0.0303) (0.0418) (0.0369) (0.0352)  

Dry 
0.109*** 0.0789*** 0.114*** 0.0962*** 0.127*** 0.692 

(0.0323) (0.0285) (0.0400) (0.0329) (0.0336)  

Belg 
0.135*** 0.107*** 0.0867** 0.122*** 0.124*** 0.649 

(0.0334) (0.0302) (0.0401) (0.0353) (0.0320)  



44 

 

 

Meher 2 
0.0578* 0.0283 0.0101 0.0422 0.0758** 0.756 

(0.0306) (0.0270) (0.0341) (0.0314) (0.0300)  

Above the productive 

asset-based poverty line, 

60th percentile 

Meher 1 
0.0648* 0.0152 0.0641 0.0205 0.0807** 0.479 

(0.0371) (0.0329) (0.0442) (0.0386) (0.0378)  

Dry 
0.139*** 0.107*** 0.111** 0.112*** 0.164*** 0.521 

(0.0363) (0.0332) (0.0447) (0.0374) (0.0364)  

Belg 
0.131*** 0.0800** 0.0490 0.105*** 0.103*** 0.470 

(0.0368) (0.0336) (0.0427) (0.0382) (0.0354)  

Meher 2 
0.114*** 0.0635** 0.0574 0.0943*** 0.133*** 0.521 

(0.0365) (0.0305) (0.0412) (0.0358) (0.0350)  

Above the livestock 

asset-based poverty line, 

40th percentile 

Meher 1 
0.0749** 0.0182 0.0681 0.0471 0.0792** 0.598 

(0.0358) (0.0300) (0.0444) (0.0357) (0.0371)  

Dry 
0.0944*** 0.0422 0.0760* 0.0440 0.0796** 0.613 

(0.0352) (0.0310) (0.0439) (0.0347) (0.0354)  

Belg 
0.0774** 0.0254 0.0409 0.0347 0.0598* 0.637 

(0.0348) (0.0309) (0.0416) (0.0338) (0.0345)  

Meher 2 
0.0910*** 0.0457 0.0765* 0.0670* 0.0701** 0.631 

(0.0348) (0.0314) (0.0425) (0.0382) (0.0344)  

Above the livestock 

asset-based poverty line, 

60th percentile 

Meher 1 
0.0639* 0.0135 0.0852* 0.0447 0.0541 0.390 

(0.0366) (0.0336) (0.0439) (0.0402) (0.0384)  

Dry 
0.0987*** 0.0576* 0.0597 0.0806** 0.0886** 0.470 

(0.0370) (0.0345) (0.0437) (0.0392) (0.0378)  

Belg 
0.0205 -0.0346 -0.0115 -0.0155 0.00403 0.503 

(0.0372) (0.0335) (0.0416) (0.0381) (0.0367)  

Meher 2 
0.0278 -0.00934 0.0234 0.00744 0.0240 0.491 

(0.0372) (0.0340) (0.0425) (0.0389) (0.0367)  

No. of observations 731 731 731 731 731 328 

 

Results are similar across estimators when considering the 40th percentile poverty line – indicating 

that treated farmers are more likely to move out of poverty in the dry season, when setting the 

threshold at a lower end of the asset based distribution. These results tend to be more sensitive to 

the choice of the poverty line and to the assets used to build the poverty metric – indicating that 

benefits might vary across the seasons contingent on households initial conditions in the asset-

based distribution. For instance in the case of movements out of poverty using the 40
th
 percentile 

poverty line and an overall asset index distribution, beneficiaries at  the lower end of the 

distribution are more likely to move out of poverty in the dry season. Setting a higher cut off, gains 

are not large enough to warrant an exit out of poverty in the dry season. Better off farmers are more 

likely to move out of poverty in the second Meyer season for instance.    
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Table 5.7: Results on economic mobility: poverty reduction indicators  

 

(1) (2) (3) (4) (5) (6) 

IPWRA IPW NN PSM RA 
Contro

l mean 

Poverty reduction indicators by season       

Moving out of poverty, 
overall asset-based 

poverty line, 40th 

percentile 

Meher 1 
0.0458 0.0485 0.0001 -0.00822 0.0422 0.257 

(0.0494) (0.0501) (0.0671) (0.0578) (0.0516)  

Dry 
0.127** 0.135** 0.110 0.147** 0.130* 0.402 

(0.0645) (0.0640) (0.0880) (0.0715) (0.0671)  

Belg 
0.0729 0.0659 0.217*** 0.0145 0.0755 0.253 

(0.0703) (0.0700) (0.0726) (0.0746) (0.0712)  

Meher 2 
0.110 0.0925 0.194* 0.109 0.120 0.378 

(0.0770) (0.0799) (0.100) (0.0774) (0.0745)  

Moving out of poverty, 

overall asset-based 

poverty line, 60th 

percentile 

Meher 1 
0.0138 0.0197 0.0132 0.00658 0.0144 0.121 

(0.0368) (0.0371) (0.0568) (0.0425) (0.0383)  

Dry 
0.0742 0.0810* 0.147** 0.0632 0.0841* 0.347 

(0.0486) (0.0485) (0.0731) (0.0555) (0.0498)  

Belg 
0.0734 0.0696 0.134** 0.0650 0.0796 0.170 

(0.0491) (0.0490) (0.0597) (0.0569) (0.0491)  

Meher 2 
0.122** 0.123** 0.188*** 0.124** 0.123** 0.289 

(0.0543) (0.0552) (0.0704) (0.0584) (0.0562)  

Moving out of poverty, 

durable asset-based 

poverty line, 40th 

percentile 

Meher 1 
0.121** 0.123** 0.0506 0.130*** 0.111** 0.186 

(0.0503) (0.0508) (0.0730) (0.0492) (0.0504)  

Dry 
0.0312 0.0383 0.0909 0.0636 0.0507 0.564 

(0.0643) (0.0644) (0.0938) (0.0653) (0.0665)  

Belg 
0.0409 0.0394 0.0875 0.0281 0.0417 0.523 

(0.0726) (0.0720) (0.103) (0.0840) (0.0769)  

Meher 2 
0.0353 0.0380 0.0617 0.0401 0.0408 0.671 

(0.0739) (0.0741) (0.0978) (0.0761) (0.0734)  

Moving out of poverty, 

durable asset-based 

poverty line, 60th 

percentile 

Meher 1 
0.0164 0.0169 -0.0336 0.0179 0.0162 0.172 

(0.0370) (0.0372) (0.0538) (0.0387) (0.0370)  

Dry 
0.0421 0.0456 0.124* 0.0438 0.0513 0.414 

(0.0502) (0.0501) (0.0683) (0.0542) (0.0513)  

Belg 
0.150*** 0.149*** 0.134* 0.151*** 0.156*** 0.357 

(0.0535) (0.0540) (0.0733) (0.0570) (0.0563)  

Meher 2 
0.0406 0.0397 0.0244 0.0203 0.0396 0.527 

(0.0626) (0.0622) (0.0843) (0.0615) (0.0628)  

Moving out of poverty, 

productive asset-based 

poverty line, 40th 

percentile 

Meher 1 
0.0826* 0.0828* 0.0355 0.0645 0.0841* 0.234 

(0.0476) (0.0481) (0.0584) (0.0573) (0.0502)  

Dry 
0.126** 0.125** 0.123 0.0932 0.124* 0.377 

(0.0625) (0.0619) (0.0925) (0.0634) (0.0672)  

Belg 
0.160** 0.157** 0.150 0.103 0.158** 0.297 

(0.0691) (0.0694) (0.0943) (0.0751) (0.0711)  
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Meher 2 
0.0689 0.0519 0.0345 0.0632 0.0494 0.496 

(0.0713) (0.0718) (0.0954) (0.0748) (0.0713)  

Moving out of poverty, 

productive asset-based 

poverty line, 60th 

percentile 

Meher 1 
0.0188 0.0164 -0.0472 -0.0107 0.0154 0.208 

(0.0370) (0.0373) (0.0518) (0.0464) (0.0389)  

Dry 
0.125** 0.128*** 0.158** 0.133*** 0.119** 0.310 

(0.0495) (0.0490) (0.0672) (0.0507) (0.0510)  

Belg 
0.0617 0.0619 0.161** 0.0912* 0.0476 0.210 

(0.0474) (0.0479) (0.0628) (0.0487) (0.0487)  

Meher 2 
0.0860* 0.0880* 0.106* 0.101** 0.0796 0.253 

(0.0482) (0.0483) (0.0573) (0.0492) (0.0490)  

Moving out of poverty, 

livestock asset-based 

poverty line, 40th 

percentile 

Meher 1 
-0.00941 -0.00833 0.0001 0.00345 -0.00638 0.177 

(0.0461) (0.0456) (0.0585) (0.0467) (0.0454)  

Dry 
0.153*** 0.153*** 0.102 0.125** 0.152*** 0.242 

(0.0568) (0.0559) (0.0818) (0.0601) (0.0567)  

Belg 
0.0453 0.0458 0.110 0.0424 0.0409 0.260 

(0.0618) (0.0614) (0.0760) (0.0711) (0.0603)  

Meher 2 
0.126** 0.127** 0.191** 0.124** 0.113* 0.185 

(0.0572) (0.0568) (0.0756) (0.0583) (0.0583)  

Moving out of poverty, 

livestock asset-based 

poverty line, 60th 

percentile 

Meher 1 
0.0117 0.0122 0.0572* -0.00543 0.0127 0.120 

(0.0337) (0.0337) (0.0342) (0.0347) (0.0332)  

Dry 
0.0646 0.0584 0.00909 0.0489 0.0670 0.265 

(0.0449) (0.0443) (0.0610) (0.0458) (0.0448)  

Belg 
-0.0187 -0.0186 0.0287 -0.0129 -0.0215 0.201 

(0.0433) (0.0432) (0.0538) (0.0427) (0.0422)  

Meher 2 
0.0405 0.0313 0.0964* 0.0521 0.0410 0.184 

(0.0424) (0.0430) (0.0494) (0.0406) (0.0430)  

Notes: 

1. Results are based on four rounds of high frequency data. 
2. *, **, & *** represent statistical significance at the 10%, 5%, & 1% level respectively. 

 

5.4 Food security indicators 

In terms of dietary diversity, there are also  significant impacts of modern irrigation on the HDDS, 

indicating that treated farmers have a significantly higher dietary diversity score during the first 

round.  

Turning to the CSI, a negative coefficient indicates a gain for treated farmers, and a positive 

coefficient, an increased use of (negative) coping strategies. Here results are less clear, with a 

strong and negative coefficient in the Belg season, after the dry season. This might indicate a 

lagged effect, e.g that the availability of food might benefit subsequent seasons, which might be 

interesting to investigate in a dynamic model. 
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Table 5.8: Results on food security indicators 

 

(1) (2) (3) (4) (5) (6) 

IPWRA IPW NN PSM RA 
Contro

l mean 

Food security indicators by season       

Household dietary 

diversity score (HDDS) 

Meher 1 
0.288** 0.221 0.180 0.344** 0.331** 4.503 

(0.145) (0.145) (0.199) (0.145) (0.151)  

Dry 
0.169 0.0964 0.284 0.0993 0.206 5.610 

(0.190) (0.192) (0.257) (0.181) (0.184)  

Belg 
0.164 0.185 0.368* 0.283* 0.246 6.037 

(0.151) (0.151) (0.212) (0.160) (0.154)  

Meher 2 
-0.163 -0.186 -0.0116 -0.198 -0.115 5.933 

(0.128) (0.128) (0.180) (0.134) (0.131)  

Coping strategies index 

(CSI) 

Meher 1 
0.435* 0.317 0.480* -0.00868 0.389 0.345 

(0.235) (0.285) (0.257) (0.475) (0.259)  

Dry 
-1.050 -0.873 -1.831* -0.864 -1.361* 4.046 

(0.669) (0.670) (1.023) (0.646) (0.701)  

Belg 
-2.442*** -2.612*** -2.963*** -3.362*** -2.601*** 4.985 

(0.711) (0.741) (0.972) (0.899) (0.713)  

Meher 2 
0.0545 -0.0272 0.626 -0.341 -0.276 3.643 

(0.657) (0.665) (0.706) (0.718) (0.713)  

Household expenditure 

(7 days, Birr, log) 

Meher 1 
0.0253 0.00230 2.285 0.0964 0.0350 3.536 

(0.0601) (0.0593) (3.963) (0.0628) (0.0621)  

Dry 
0.0603 0.0606 19.25** 0.0935 0.0818 3.985 

(0.0702) (0.0646) (8.466) (0.0619) (0.0659)  

Belg 
-0.0352 -0.0437 3.963 -0.0436 -0.0216 4.123 

(0.0628) (0.0623) (8.363) (0.0565) (0.0610)  

Meher 2 
-0.00684 -0.0127 -1.106 0.0227 0.0100 4.128 

(0.0540) (0.0573) (8.189) (0.0524) (0.0529)  

Household food 

expenditure (7 days, 

Birr, log) 

Meher 1 
0.0643 0.00609 -0.103 0.122 0.0122 2.212 

(0.101) (0.0958) (0.124) (0.105) (0.101)  

Dry 
-0.0426 -0.0393 0.0655 -0.0284 -0.0225 3.225 

(0.0714) (0.0698) (0.0902) (0.0668) (0.0708)  

Belg 
-0.0181 -0.0336 0.0662 -0.0567 -0.0299 3.463 

(0.0677) (0.0682) (0.0891) (0.0678) (0.0690)  

Meher 2 
-0.000238 -0.0104 0.156* 0.00734 0.00123 3.308 

(0.0626) (0.0654) (0.0891) (0.0661) (0.0627)  

No. of observations 731 731 731 731 731 328 

Notes: 

1. Results are based on four rounds of high frequency data. 

2. *, **, & *** represent statistical significance at the 10%, 5%, & 1% level respectively. 
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5.5 Resilience indicators 

Last, the impact of irrigation is investigated on the various resilience metrics over the various 

seasons. Here the results are less intuitive and are a function of the underlying methodology for the 

resilience metric. Results are largely significant in the case of the PRIME-based composite 

indicator where the results are consistently positive across the various rounds, and the coefficients 

are particularly high for the dry season. The latter finding is intuitive and implies that the benefits 

of irrigation should be at their maximum during the dry season and that treatment does strengthen 

resilience status.  

Relative to other metrics, notably the RIMA I and the RIMA II, a positive result was also found in 

the dry season (however only under the NN estimator). Relative to food security based 

development resilience, results are different – and imply the households are more resilient in terms 

of food security in the second Meyer season – e.g. at the last round of the survey. Asset based 

development resilience is instead not significant – and this warrants further analysis.  Note that this 

metrics are very different and further work is needed to unpack the metrics – to analyse the single 

components that compose the single resilience construct. 

Table 5.9: Results on resilience indicators based on treatment effects estimation 

 

(1) (2) (3) (4) (5) (6) 

IPWRA IPW NN PSM RA 
Contro

l mean 

Resilience indicators by season       

RIMA I 

Meher 1 
-0.0458 -0.0306 0.0211 -0.0105 -0.00902 0.476 

(0.0346) (0.0344) (0.0468) (0.0377) (0.0368)  

Dry 
0.0341 0.0424 0.109** 0.0428 0.0779** 0.442 

(0.0331) (0.0323) (0.0455) (0.0319) (0.0359)  

Belg 
-0.0389 -0.0354 -0.0360 0.00496 -0.0257 0.628 

(0.0343) (0.0349) (0.0461) (0.0368) (0.0362)  

Meher 2 
-0.0119 -0.00577 -0.0161 -0.00806 -0.00722 0.500 

(0.0347) (0.0346) (0.0488) (0.0323) (0.0352)  

RIMA II 

Meher 1 
-0.00212 0.000956 0.0513 0.0298 0.0485 0.454 

(0.0329) (0.0316) (0.0483) (0.0335) (0.0372)  

Dry 
0.00989 0.0323 0.124*** 0.0354 0.0452 0.213 

(0.0326) (0.0305) (0.0328) (0.0301) (0.0318)  

Belg 
-0.0122 -0.0125 0.0199 -0.00310 -0.00109 0.0854 

(0.0209) (0.0214) (0.0196) (0.0195) (0.0193)  

Meher 2 
-0.00856 -0.0160 0.0397 -0.0205 -0.00351 0.168 

(0.0243) (0.0265) (0.0294) (0.0274) (0.0264)  

PRIME 

Meher 1 
0.0998*** 0.0989*** 0.0695 0.146*** 0.134*** 0.518 

(0.0348) (0.0335) (0.0505) (0.0379) (0.0379)  

Dry 
0.191*** 0.203*** 0.186*** 0.191*** 0.195*** 0.174 

(0.0321) (0.0310) (0.0404) (0.0320) (0.0330)  

Belg 0.161*** 0.163*** 0.185*** 0.164*** 0.175*** 0.220 
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(0.0335) (0.0333) (0.0394) (0.0350) (0.0336)  

Meher 2 
0.0911*** 0.0837*** 0.145*** 0.0757*** 0.0994*** 0.162 

(0.0277) (0.0286) (0.0361) (0.0287) (0.0294)  

Development resilience 

(expenditure) 

Dry 
-0.0334 -0.0260 -0.0572 -0.0410 -0.0299 0.434 

(0.0384) (0.0370) (0.0504) (0.0402) (0.0381)  

Belg 
-0.0356 -0.0321 -0.0522 -0.00311 -0.0300 0.469 

(0.0380) (0.0383) (0.0474) (0.0414) (0.0377)  

Meher 2 
-0.0454 -0.0205 -0.0500 -0.00310 -0.0279 0.479 

(0.0376) (0.0383) (0.0481) (0.0400) (0.0366)  

Development resilience 

(HDDS) 

Dry 
-0.0107 -0.00104 0.0174 -0.0180 -0.00863 0.446 

(0.0397) (0.0379) (0.0481) (0.0403) (0.0388)  

Belg 
-0.0435 -0.0474 -0.0697 -0.0852** -0.0527 0.408 

(0.0373) (0.0375) (0.0478) (0.0409) (0.0366)  

Meher 2 
0.0973** 0.0945** 0.0529 0.0862** 0.0997** 0.466 

(0.0398) (0.0384) (0.0532) (0.0397) (0.0395)  

Development resilience 

(Assets) 

Meher 1 
-0.00201 -0.00497 0.0174 -0.00682 -0.0422 0.680 

(0.0364) (0.0346) (0.0492) (0.0349) (0.0376)  

Dry 
-0.0172 -0.0209 -0.0563 -0.0100 -0.0405 0.505 

(0.0389) (0.0378) (0.0508) (0.0408) (0.0392)  

Belg 
-0.0258 -0.0271 -0.0401 -0.0407 -0.0451 0.652 

(0.0368) (0.0367) (0.0490) (0.0387) (0.0368)  

Meher 2 
0.0309 0.0309 0.0174 0.0304 0.0169 0.512 

(0.0392) (0.0383) (0.0536) (0.0408) (0.0385)  

No. of observations 731 731 731 731 731 328 

Notes: 
1. Results are based on four rounds of high frequency data. 

2. *, **, & *** represent statistical significance at the 10%, 5%, & 1% level respectively. 

 

Last, assets growth is explored across the various rounds, and the extent to which resilience and 

treatment status have an impact on households assets growth trajectory over the seasons is assessed. 

To this end, estimates of the impact of the project on assets growth are presented in a dynamic 

framework based on the auto-regressive panel data estimator also known as the Blundell-Bover 

estimator or system GMM (Table 5.6). Here, the dynamic structure of the data is exploited (e..g an 

analysis which combines all rounds) and an asset based growth model is estimated conditional on 

treatment, initial conditions and lagged assets, and other key covariates (age, gender, education 

level and marital status of the household head, number of adult members, dependency ratio and the 

size of land owned by the household). Two specifications are presented, model 1 with a more 

parsimonious specification and model 2 with a richer set of covariates. The results show how the 

impact of treatment is remarkably positive, indicating that the effects of modern irrigation, 

contribute to positive asset growth over time. However initial conditions (e.g. asset levels at the 

first round) negatively impact assets growth, indicating that the highest the level of assets at 

“baseline” the lower the growth over time. This possibly corroborates the idea that the richest 
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present a slower growth, but still positive – as showed by the fact that asset growth is also 

positively related to households’ previous status.  

Looking at coefficient of interest, e.g. the interaction term between drought and treatment status 

which proxies for resilience, the latter is positive and statistically significant, suggesting that the 

intervention increased beneficiary household welfare despite the negative incidence of the drought 

shock, therefore contributing to their increased resilience.  

Last the season dummies presented in model 1, highlight the fact that asset growth is negatively 

impacted by the variability of weather shocks across the seasons. Specifically,  the negative effects 

of weather on asset growth are larger in the dry season.  The seasonal effects are collinear with the 

drought indicators in the second specification and  the significance of the seasonal dummies fades 

away in the second specification.  

 

Table 5.6: Impact don assets growth based on system GMM estimation 

 (1) (2) 

 
Basic asset growth model 

Asset growth model with shock and PASIDP 

beneficiary interaction term 

   

Lagged overall assets  0.41*** 0.41*** 

 (0.03) (0.03) 

Initial overall assets -0.63*** -0.45*** 

 (0.06) (0.05) 

PASIDP beneficiary status  0.22*** 0.175*** 

 (0.03) (0.03) 

Drought  -0.02 

  (0.0323) 

PASIDP beneficiary status * Drought  0.13*** 

  (0.04) 

Head age  0.012*** 

  (0.001) 

Head Gender  0.19*** 

  (0.05) 

Head education (1=Illiterate)  -0.16*** 

  (0.05) 

Head education (1=Primary)  0.30*** 

  (0.06) 

Head marital status  
-0.08 

 

  (0.05) 

Number of adult members  0.08*** 

  (0.01) 

Dependency ratio  0.03*** 

  (0.01) 

HH owned land  0.001* 

  (0.00) 

Dry season (dummy) -0.27*** -0.16 
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 (0.03) (0.03) 

Belg season (dummy) -0.078** -0.01 

 (0.03) (0.03) 

Rainy season (dummy) -0.14*** -0.09 

 (0.03) (0.03) 

Constant 1.84*** -0.09 

 (0.11) (0.08) 

Wald F statistic 183.54*** 114.49*** 

Sargan test 2.78 1.51 

AR (2) test 0.44 0.54 

   

No. of observation 2924 2924 

Notes: 
1. Results are based on four rounds of high frequency data and 12 month recalled asset prior to Meher 1. 

2. *, **, & *** represent statistical significance at the 10%, 5%, & 1% level respectively. 

 

Table 5.6a presents instead the same asset growth model but this time adding lagged resilience 

(resilience measured at the previous wave/round), using the PRIME indicators as a proxy for 

resilience. Note how asset growth is a function of past resilience status, conditional on treatment, 

and the shock in question (e.g. drought). This essentially mean that a unit increase in household 

resilience in the previous season generates a higher asset growth in the subsequent season.  Even 

under this specification, note how there is asset accumulation over the rounds (e.g. the higher the 

asset levels at the previous season, the higher the assets growth); asset growth increases also with a 

unit increase in past resilience status (e.g. if a household is resilient at the previous round – it is 

more likely to exhibit future asset growth); the treatment effect is positive and contributes to asset 

growth.  

 

Table 5.6a: Impact of treatment controlling for resilience (PRIME) on asset growth, systems 

GMM estimation 

  

Asset growth model with lagged Resilience 

(2) 

Lagged overall assets  0.532*** 

Lagged  resilience (PRIME) 0.223*** 

PASIDP beneficiary status  0.064** 

Drought  -0.047* 

Belg season (dummy) -0.055 

Rainy season (dummy) -0.108*** 

Constant 0.136 

Wald F statistic 91.88*** 
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No. of observation 2193 

Note: 

1. .01 - ***; .05 - **; .1 - *; Standard errors not shown for sake of brevity. 
2. Drought indicator is a dummy variable based on reported drought shock. 

3. Initial conditions included, but not shown for the sake of brevity. 

 

In table 5.6b, the same growth model is presented, this time modelling resilience gains as an 

outcome – as opposed to assets, using the same resilience index (the PRIME based index).  This 

specification essentially looks at whether changes in resilience over time are positively affected by 

the treatment. This is indeed the case and the results point to the fact that the intervention, e.g. the 

PASIDP modern irrigation contributed to building resilience overtime – and this is path dependent, 

e.g. current resilience is a function of past resilience and increases over time, e.g. the more the 

household is resilient in the past seasons, the more likely to exhibit a higher resilience growth in the 

future, conditional on the negative impact of the drought.   

 

Table 5.6b:  Impact of treatment on resilience gains (PRIME) based on systems GMM 

estimation 

  
Resilience gains model 

(PRIME) 

Lagged  resilience (PRIME) 0.103*** 

PASIDP beneficiary status  0.144*** 

Drought -0.049*** 

Belg season (dummy) 0.065*** 

Rainy season (dummy) 0.109*** 

Constant -0.029 

Wald F statistic 17.37*** 

No. of observation 2193 

Note: 
1. .01 - ***; .05 - **; .1 - *; Standard errors not shown for sake of brevity. 

2. Drought indicator is a dummy variable based on reported drought shock. 
3. Initial conditions included, but not shown for the sake of brevity. 

 

5.6 Market access indicators 

Turning to a suite of indicators that proxies for market participation, modern irrigation increases 

market participation relative to crop sales, by 33%  in the first Meher, and even 175% in the Dry 

season, compared to their counterfactual farmers. This shows how the irrigation benefits translated 

into market opportunities for farmers – in the dry season.  
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Table 5.6: Results on market access indicators by season 

 

(1) (2) (3) (4) (5) (6) 

IPWRA IPW NN PSM RA 
Control 

mean 

Market access indicators by season       

Market participation for 

crops 

Meher 1 
0.108*** 0.112*** 0.154*** 0.116*** 0.125*** 0.326 

(0.0371) (0.0355) (0.0484) (0.0362) (0.0377)  

Dry 
0.235*** 0.246*** 0.232*** 0.238*** 0.232*** 0.134 

(0.0331) (0.0315) (0.0408) (0.0325) (0.0328)  

Belg 
0.0895 0.0902*** 0.0707** 0.0856*** 0.0826*** 0.137 

(.) (0.0281) (0.0358) (0.0284) (0.0280)  

Meher 2 
0.0269 0.0278 -0.0447 0.0378 0.00343 0.223 

(0.0317) (0.0301) (0.0484) (0.0340) (0.0332)  

Market participation for 

livestock 

Meher 1 
-0.0617 -0.0551 -0.00124 -0.0155 -0.0321 0.402 

(0.0383) (0.0368) (0.0506) (0.0373) (0.0382)  

Dry 
0.00523 -0.000844 0.0546 -0.0211 0.0311 0.244 

(0.0349) (0.0343) (0.0378) (0.0379) (0.0334)  

Belg 
-0.0284 -0.0289 -0.00993 -0.0199 -0.00572 0.241 

(0.0338) (0.0345) (0.0415) (0.0380) (0.0328)  

Meher 2 
-0.00975 -0.0142 -0.0517 -0.00124 -0.0142 0.293 

(0.0348) (0.0351) (0.0500) (0.0359) (0.0347)  

Market participation for 

livestock products 

Meher 1 
0.0104 0.0204 0.0112 0.0273 0.0349 0.296 

(0.0372) (0.0361) (0.0464) (0.0369) (0.0366)  

Dry 
0.0223 0.0264 0.0794* 0.00868 0.0541 0.284 

(0.0372) (0.0360) (0.0466) (0.0374) (0.0356)  

Belg 
0.0279 0.0314 0.0720* 0.000620 0.0449 0.265 

(0.0349) (0.0348) (0.0397) (0.0378) (0.0341)  

Meher 2 
0.0354 0.0324 0.122** 0.0136 0.0511 0.302 

(0.0364) (0.0359) (0.0492) (0.0387) (0.0358)  

Travel time to market 

Meher 1 
0.0709 -0.168 1.139 -0.854 -0.228 115.769 

(3.036) (3.043) (3.269) (4.045) (3.035)  

Dry 
-13.29 -18.32 -11.41 -16.06 -14.18 108.8 

(13.78) (18.90) (38.97) (17.43) (18.05)  

Belg 
8.059 7.386 5.467 8.095 5.056 66.20 

(6.146) (6.555) (8.952) (6.600) (6.657)  

Meher 2 
21.41** 29.46*** 37.97*** 29.84*** 27.87*** 66.32 

(10.62) (10.72) (11.03) (10.41) (9.962)  

No. of observations 731 731 731 731 731 328 

Notes: 

3. Results are based on four rounds of high frequency data. 

4. *, **, & *** represent statistical significance at the 10%, 5%, & 1% level respectively. 
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6. Conclusion 

The results from this impact assessment are based on an innovative high frequency dataset which 

was collected across four seasons and over 12 months in four Ethiopian regions, to assess the 

sustainability of impact of an irrigation project on economic mobility and resilience, as well as 

other relevant indicators such agricultural production and food security, across the seasons in 

questions. The added value of a data collection of such kind resides in the fact that allows one to 

take into account the variability of a protracted shock and its consequences on the recipients over 

time. It also allows one to assess whether PASIDP has the protective effect across the seasons and 

whether this impact varies. 

It is therefore, of policy relevance, to assess how impacts vary long after a project closes, and 

address to what extent impact varies contingent on the variability of shocks in a context such as the 

Ethiopian one, which is characterized by high levels of vulnerability, spatial diversity and the 

existence of a number of large scale programs designed to build household and community level 

resilience.  

The results convey a number of messages: first the sustainability of impact across the period of 

observation, which is the period following a major drought which occurred in 2016. PASIDP 

closed at the end of 2015 and impacts of irrigation schemes can still be felt and are particularly 

remarkable during the dry season.  

In terms of agricultural production indicators, treatment farmers seem to remarkably invest on 

agricultural inputs, have higher yields and this is particularly evident in the Dry season which, 

intuitively, should be the season where the benefits of irrigation systems should be felt the most.  

Impacts are also evident across the crop portfolio where value of sales of specific crops (notably, 

grains and cereals, but also vegetables and fruit), are significantly higher for those accessing 

modern irrigation compared to their rain-fed counterparts.  While treated farmers seem to intensify, 

and mostly rely on crop production as their major source of income, their counterfactual 

counterparts resorts to non-agricultural income sources, specifically livelihoods activities such as 

wage employment and self-employment .  

As far as economic mobility indicators are concerned, treated farmers have a higher return from 

productive assets, are more likely to be above the poverty line, and are less likely to be transiently 

poor particularly during the Dry season. In terms of movements out of poverty – treatment farmers 

are also more likely to exit poverty -  relative to persisting in poverty – in the dry season – 

compared to their rain-fed counterpart,  particularly when the poverty metric is based on productive  

assets.  
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In terms of food security indicators, a key finding is the reduction in the negative coping strategies 

to which households resort in times of distress. Such reduction is particularly significant in the Belg 

season, the season immediately following the Dry season, and are intuitive, implying treated 

farmers increased resilience. This finding also underlines the persistence of the treatment effect  – 

which goes beyond the season of interest, notably the Dry season, and manifest itself also in the 

following season.  

As far as market access indicators are concerned, it was found that market participation regarding 

crop sales,  proxied by distance metrics, are consistently larger for treated farmers compared to 

rain-fed counterparts, particularly in the Dry season and to a lesser extent in the following Belg 

season.  

A number of resilience metrics were also compared and tested with this data. The Prime 

methodology – a capacity based approach - indicates gains across all rounds for treated farmers 

compared to counterfactual farmers. These gains seem to be consistently larger in the Dry season 

compared with the other rounds. Such findings are not evident in the other resilience metrics, 

although impacts are present but to a lesser extent and only in the Dry season.   

Defined as it is by a much sharper focus on altering the dynamics of human welfare, resilience 

building requires a very different empirical strategy, compared with standard impact assessment 

cross-sectional analysis. To this, an attempt to look at dynamics was made through the growth 

model presented in Table 5.6, 5.6a and 5.6b, where a dynamic panel data model, notably system 

GMM, the Blundell-Bover estimator, was employed to assess the impact of PASIDP on asset 

growth, across the seasons, as well as on resilience gains or growth, making full use of the four 

rounds of data.  A dynamic model is more suitable given that one can estimate the impact of 

treatment on resilience controlling for past shocks and past welfare dynamics.  

The findings once again unequivocally show the benefits of irrigation  on assets growth - 

contingent on the drought shocks – where the benefits are overwhelmingly positive. Assets growth 

is also inversely related to initial assets, indicating that the growth rate is potentially slower for 

those with higher level of assets at the first round. Results also point to the fact that treatment is 

positively related to resilience gains and that the latter increase over time. 

This study clearly portrays strong evidence that investing in irrigation is highly transformative for 

farmers, particularly for those at the lower end of asset distribution. In addition, through a high 

frequency data collection, it was possible to assess the seasonal variation in such benefits as well as  

the sustainability of such benefits over time in a context where the drought spells are protracted and 

affect households differentially across the various seasons.  

The following policy recommendations can be offered based on the findings of this study. The first 

and most important one is that irrigation projects are transformative and generate returns that make 

farmers resilient to climatic shocks and to this end, irrigation may act as an effective risk 
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management strategy increasing farmers income and building resilience. Shocks contexts that are 

highly volatile, may require interventions that are tailored to such volatility, bundling interventions 

to for instance index insurance or other informal insurance mechanisms, capable of having larger 

multiplier effects. 

Focused projects such as the ones providing small scale irrigation infrastructure are very effective 

at increasing production of high value crops but need to be bundled with marketing and market 

access interventions, to allow farmers to maximize the benefits from increased production. 

Commercialization and marketing support continue to be areas of improvement and should be 

bundled to interventions aimed at improving agricultural production. 

The last policy recommendation concerns the ideal data structure of M&E systems for resilience 

building projects. M&E systems for resilience-building projects necessarily need to differ from 

standard M&E. The former require high frequency data – e.g. data collected at shorter time 

intervals compared with standard baseline, midterm and completion surveys – to be able to assess 

whether the interventions have indeed a protective effects towards reducing farmers’ vulnerability 

to shocks and longer-term stressors in times of need. In order to minimize the cost implications of 

collecting data of such kind – such granular data could be collected for specific sites and for sub-

samples, and combined with the more standard M&E data, which can be instead collected bi-

annually. In addition, higher cost-efficiency could be gained by forging alliances with other 

stakeholders on the ground – so that data collection efforts won’t be duplicated – for instance 

between the Rome-based agencies – which have a vested interest in having joint early warning 

systems – but also with national governments and local NGOs – focusing on geographical areas 

that are particularly shocks prone.  
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Appendix 1: Agricultural production and economic mobility: 
Asset indices 

Table 1A: List of crops included in each agricultural production indicator 
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Crop Agricultural production 

indicators 
Items included 

Grains Cereals, pulse, oilseed 

Cereals Teff, barley, wheat, maize, sorghum, oats, rice 

Vegetables 
Haleko, onion, garlic, green leaf vegetables, tomato, cabbage, 

carrot, ginger, pumpkin, green pepper  

Root Potato, sweet potato, yam, beet root, cassava 

Pulses 
Horse beans, lentils, chick peas, cow peas, vetch, haricot 

beans,  field peas 

Fruits 
Banana, pineapple,  avocado,  mango,  orange, watermelon, 

cactus, apple, juniper  

Spices Black pepper,  red pepper 

Perennials Coffee, chat, enset, eucalyptus, bamboo, dikerence, acacia 

Table 2A: List of assets included in each economic mobility indicators: asset indicies  

Economic mobility: Asset 

indicies 
Items included 

Durable assets 
Numbers of kerosene stove, electric stove, bed, watch, mobile phone, TV, 

sofa, bicycle, motor bicycle, cart, sewing machine, electric mitad  

Productive assets 
Numbers of sickle, axe, pickaxe, hoe, traditional plough, modern plough, 

leather whip beehive, shovel, sprayer, pump 

Livestock assets 
Numbers of ox, cow, sheep, goat, horse, donkey, mule, camel, pig, chicken, 

duck 

Large livestock assets Numbers of ox, cow, sheep, goat, horse, donkey, mule, camel, pig 

Small livestock assets Numbers of chicken, duck 
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Appendix 2: Matching quality statistics 

Figure 1A: Balance between treatment and control groups  

 

Figure 2A: Common support between treatment and control groups 
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Figure 3A: Bias reduction between treatment and control groups 
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Appendix 3: Standardized Precipitation Evapotranspiration 
Index (SPEI) 

The Standardized Precipitation Evapotranspiration Index (SPEI) is an extension of the widely used 

Standardized Precipitation Index (SPI). The SPEI is designed to take into account both 

precipitation and potential evapotranspiration (PET) in determining drought.  

The parameters of the SPEI are a time-series of total monthly precipitation (P) and monthly 

potential evapotranspiration (PET). Monthly PET was calculated by the Thornthwaite equation that 

only relies on monthly mean temperature (T) and latitude (L) to calculate the monthly average day 

length. 

A simple climate water balance was first calculated as the differences between precipitation 𝑃 and 

𝑃𝐸𝑇 for month 𝑗 according to:  

𝐷 = 𝑃𝑗 − 𝑃𝐸𝑇𝑗   

where monthly 𝑃𝐸𝑇 is calculated by Thornthwaite equation:  

𝑃𝐸𝑇 =  16𝐾 (
10𝑇

𝐼
)

𝑚

   

where 𝑇 is monthly mean temperature (°C); 𝐼 is heat index calculated as the sum of 12 monthly 

index values; 𝑚 is the coefficient dependent on 𝐼: m=6.75 × 10
−7

 ·𝐼3
 – 7.71 × 10

−7
 ·𝐼2

 + 1.79 × 10
−2

 

·I + 0.492; and K is a correction coefficient computed as a function of the latitude and month. 

The calculated 𝐷𝑖 values are aggregated at different time scales, following the same procedure as 

used for the SPI. The difference , D I,j
k  in month 𝑗 and year 𝑖 depends on the chosen time scale k. In 

our case, the accumulated difference for one month in a particular year 𝑖 with a 4-month time scale 

was calculated to match the three seasons in Ethiopia using monthly precipitation and temperature 

data for the period January 1981 to December 2017. Then, the log-logistic distribution was used for 

normalizing the D series to obtain the SPEI. 

SPEI has an intensity scale in which both positive and negative values are calculated, identifying 

wet and dry events. For the analysis, we used the continues negative SPEI values replacing the 

positive values to zero to capture drought. In the matching, we used the SPEI drought index for the 

2015 Meher season, while for the outcome models we used the SPEI drought index for the four 

season in the period between June 2016 to September 2017. 

The SPEI values for each season were computed using the SPEI command in R. 
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